Altex E~Line 949 Part A (MCR)

Resene Paints (Australia) Limited

Version No: 4.9

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **13/05/2020**Print Date: **13/05/2020**S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex E~Line 949 Part A (MCR)
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Part A of a multi-component industrial coating
Relevant identified uses	Part A of a multi-component industrial coatir

Details of the supplier of the safety data sheet

Registered company name	Resene Paints (Australia) Limited	
Address	64 Link Drive Queensland 4207 Australia	
Telephone	+61 7 55126600	
Fax	+61 7 55126697	
Website	www.resene.com.au	
Email	Not Available	

Emergency telephone number

Association / Organisation	AUSTRALIAN POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification ^[1]	Flammable Liquid Category 3, Eye Irritation Category 2A, Acute Aquatic Hazard Category 3, Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD	WARNING
Hazard statement(s)	
H226	Flammable liquid and vapour.
H319	Causes serious eye irritation.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H412	Harmful to aquatic life with long lasting effects.

Supplementary statement(s)

Not Applicable

Version No: 4.9 Page 2 of 14 Issue Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

Print Date: 13/05/2020

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P233	Keep container tightly closed.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P321	Specific treatment (see advice on this label).	
P362	ake off contaminated clothing and wash before reuse.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
-----------	--

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Avoid giving milk or oils.

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1330-20-7	10-20	xylene
123-86-4	10-20	n-butyl acetate
108-65-6	1-10	propylene glycol monomethyl ether acetate, alpha-isomer

SECTION 4 FIRST AID MEASURES

D

Description of first aid measure	es
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Version No: 4.9 Page 3 of 14 Issue Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

Print Date: 13/05/2020

- Avoid giving alcohol
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool
- Give activated charcoal

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- ▶ Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to xylene

- Figure 1.2 Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min

Sampling Time End of shift Last 4 hrs of shift

Comments

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed.
- Fire Fighting
 - ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
 - Avoid spraying water onto liquid pools.
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire

Version No: 4.9 Page 4 of 14 Issue Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

Print Date: 13/05/2020

Fire/Explosion Hazard

- ▶ Liquid and vapour are flammable
- Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- ▶ Moderate explosion hazard when exposed to heat or flame.
- ▶ Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.

▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

HAZCHEM

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and meterial for containment and cleaning up

Methods and material for containment and cleaning up		
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. 	
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. 	

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ Electrostatic discharge may be generated during pumping this may result in fire. ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- ▶ Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
 - Prevent concentration in hollows and sumps.
 - ▶ DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources.

Safe handling

- ► Avoid generation of static electricity.
- DO NOT use plastic buckets
- ▶ Earth all lines and equipment. ▶ Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Version No: 4.9 Page 5 of 14 Issue Date: 13/05/2020

Print Date: 13/05/2020 Altex E~Line 949 Part A (MCR)

▶ DO NOT allow clothing wet with material to stay in contact with skin

- Store in original containers in approved flammable liquid storage area.
- ▶ Store away from incompatible materials in a cool, dry, well-ventilated area.
- ons, basements or areas where vapours may be trapped
- No smoking, naked lights, heat or ignition sources.
- ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access
- Figure 3 Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- ▶ Keep adsorbents for leaks and spills readily available.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Other information

Suitable container

Packing as supplied by manufacturer.

- Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ► For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

- reacts with water on standing to form acetic acid and n-butyl alcohol
- reacts violently with strong oxidisers and potassium tert-butoxide
- ▶ is incompatible with caustics, strong acids and nitrates
- b dissolves rubber, many plastics, resins and some coatings

Xylenes

- ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- ▶ attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary

oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable Storage incompatibility

- dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- ▶ Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity
- Microwave conditions give improved yields of the oxidation products. Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs.
- Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

- ▶ Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- ▶ Heat is also generated by the interaction of esters with caustic solutions
- ▶ Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- ▶ Esters may be incompatible with aliphatic amines and nitrates.

- Х - Must not be stored together
- 0 May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

Version No: 4.9 Page 6 of 14 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	n-butyl acetate	n-Butyl acetate	150 ppm / 713 mg/m3	950 mg/m3 / 200 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
xylene	Xylenes	Not Available	Not Available	Not Available
n-butyl acetate	Butyl acetate, n-	Not Available	Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
xylene	900 ppm	Not Available
n-butyl acetate	1,700 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used

Personal protection

- ► Safety glasses with side shields.
- Chemical goggles.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or

Eye and face protection

Version No: 4.9 Page 7 of 14 Issue Date: 13/05/2020

Print Date: 13/05/2020 Altex E~Line 949 Part A (MCR)

national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact
- chemical resistance of glove material.
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Overalls.

- ▶ PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Ensure there is ready access to a safety shower

Other protection

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Altex E~Line 949 Part A (MCR)

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum	Half-Face	Full-Face	Powered Air
Protection Factor	Respirator	Respirator	Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x ES	-	Air-line**	-

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Version No: 4.9 Page 8 of 14 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
TEFLON	С
VITON	С
VITON/BUTYL	С

* CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ► Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Coloured with Characteristic Odour		
Physical state	Liquid	Relative density (Water = 1)	1.38
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	439
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	289.855
Initial boiling point and boiling range (°C)	132	Molecular weight (g/mol)	Not Available
Flash point (°C)	26	Taste	Not Available
Evaporation rate	0.9 BuAC = 1	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.6	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	34
Vapour pressure (kPa)	0.96	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	3.95	VOC g/L	460

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Version No: **4.9** Page **9** of **14** Issue Date: **13/05/2020**

Altex E~Line 949 Part A (MCR)

Print Date: 13/05/2020

The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xvlene is a central nervous system depressant Accidental ingestion of the material may be damaging to the health of the individual. Ingestion Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition **Skin Contact** Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Eye This material can cause eye irritation and damage in some persons. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Chronic Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. IRRITATION TOXICITY Altex E~Line 949 Part A (MCR) Not Available Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: >1700 mg/kg^[2] Eye (human): 200 ppm irritant Eye (rabbit): 5 mg/24h SEVERE Inhalation (rat) LC50: 4994.295 mg/l/4h[2] xvlene Oral (rat) LD50: 3523-8700 mg/kg^[2] Eye (rabbit): 87 mg mild Eye: adverse effect observed (irritating)^[1] Skin (rabbit):500 mg/24h moderate Skin: adverse effect observed (irritating)[1] TOXICITY IRRITATION Dermal (rabbit) LD50: 3200 mg/kg^[2] Eve (human): 300 mg Inhalation (rat) LC50: 1.802 mg/l4 h^[1] Eye (rabbit): 20 mg (open)-SEVERE Oral (rat) LD50: =10700 mg/kg $^{[2]}$ Eve (rabbit): 20 mg/24h - moderate n-butyl acetate Eye: no adverse effect observed (not irritating)[1]Skin (rabbit): 500 mg/24h-moderate Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Eye: no adverse effect observed (not irritating)[1]dermal (rat) LD50: >2000 mg/kg[1] propylene glycol monomethyl ether acetate, alpha-isomer Inhalation (rat) LC50: 6510.0635325 mg/l/6h[2] Skin: no adverse effect observed (not irritating)^[1] Oral (rat) LD50: 5155 mg/kg^[1] 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise Leaend: specified data extracted from RTECS - Register of Toxic Effect of chemical Substances The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, Altex E~Line 949 Part A (MCR) involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Reproductive effector in rats

XYLENE

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Version No: **4.9** Page **10** of **14** Issue Date: **13/05/2020**

Altex E~Line 949 Part A (MCR)

Print Date: 13/05/2020

N-BUTYL ACETATE

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as

flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

InternationI Program on Chemical Safety: the Joint FAOWHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

For propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM).

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body.

As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene glycol ethers are unlikely to possess genetic toxicity.

Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical.

XYLENE & N-BUTYL ACETATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity	×	Carcinogenicity	X
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	X

Legend:

🗶 – Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Altex E-Line 949 Part A (MCR)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	2.6mg/L	2
xylene	EC50	48	Crustacea	1.8mg/L	2
	EC50	72	Algae or other aquatic plants	3.2mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	18mg/L	4
	EC50	48	Crustacea	=32mg/L	1
n-butyl acetate	EC50	96	Algae or other aquatic plants	1.675mg/L	3
	EC90	72	Algae or other aquatic plants	1-540.7mg/L	2
	NOEC	504	Crustacea	23.2mg/L	2

Version No: 4.9 Page 11 of 14 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

ENDPOINT TEST DURATION (HR) **SPECIES** VALUE SOURCE LC50 96 Fish 1 100mg/L propylene glycol monomethyl 373mg/L EC50 48 Crustacea 2 ether acetate, alpha-isomer 72 2 EC50 Algae or other aquatic plants >1-ma/L NOEC 96 Algae or other aquatic plants 2 >=1-mg/L Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite Legend:

V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Aromatic Substances Series

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol: 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125: BCF: 23; log BCF: 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

For n-Butyl Acetate:

Koc: ~200; log Kow: 1.78;

Half-life (hr) air: 144:

Half-life (hr) H2O surface water: 178 - 27156:

Henry's atm: m3 /mol: 3.20E-04

BOD 5 if unstated: 0.15-1.02,7%;

COD: 78%: ThOD: 2.207;

BCF: 4-14.

Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals: the half-life for this reaction in air is estimated to be about 4 days.

Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
n-butyl acetate	LOW	LOW
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
xylene	MEDIUM (BCF = 740)	
n-butyl acetate	LOW (BCF = 14)	
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)	

Mobility in soil

Ingredient	Mobility
n-butyl acetate	LOW (KOC = 20.86)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

Version No: 4.9 Page 12 of 14 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ► Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

•3Y

Marine Pollutant HAZCHEM

Land transport (ADG)

UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	Class 3 Subrisk Not Applicable	
Packing group	III	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L	

Air transport (ICAO-IATA / DGR)

UN number	1263		
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	3 Not Applicable 3L	
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack		A3 A72 A192 366 220 L

Version No: 4.9 Page 13 of 14 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

355 Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack 60 L Passenger and Cargo Limited Quantity Packing Instructions Y344 Passenger and Cargo Limited Maximum Qty / Pack 10 L

Sea transport (IMDG-Code / GGVSee)

UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable	
Packing group	III	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

XYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

N-BUTYL ACETATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (xylene; n-butyl acetate; propylene glycol monomethyl ether acetate, alpha-isomer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	13/05/2020
Initial Date	18/09/2017

Version No: 4.9 Page **14** of **14** Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part A (MCR)

Version	Issue Date	Sections Updated
3.9.1.1.1	13/05/2020	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Advice to Doctor, Chronic Health, Classification, Environmental, Exposure Standard, First Aid (inhaled), Ingredients, Personal Protection (Respirator), Physical Properties, Storage (storage incompatibility), Supplier Information, Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.

Altex E~Line 949 Part B

Resene Paints (Australia) Limited

Version No: 4.7

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **13/05/2020** Print Date: **13/05/2020** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex E~Line 949 Part B
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Part B of a multi-component industrial coating

Details of the supplier of the safety data sheet

Registered company name	Resene Paints (Australia) Limited
Address	64 Link Drive Queensland 4207 Australia
Telephone	+61 7 55126600
Fax	+61 7 55126697
Website	www.resene.com.au
Email	Not Available

Emergency telephone number

Association / Organisation	AUSTRALIAN POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification [1]	Flammable Liquid Category 3, Respiratory Sensitizer Category 1, Acute Aquatic Hazard Category 3, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

DANGER

Hazard statement(s)

nazaru statement(s)	
H226	Flammable liquid and vapour.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H317	May cause an allergic skin reaction.
H412	Harmful to aquatic life with long lasting effects.

Version No: 4.7 Page 2 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P261	Avoid breathing mist/vapours/spray.
P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P285	In case of inadequate ventilation wear respiratory protection.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P321	Specific treatment (see advice on this label).
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.
P363	Wash contaminated clothing before reuse.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P312	Call a POISON CENTER or doctor/physician if you feel unwell.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
28182-81-2	80-90	hexamethylene diisocyanate polymer
123-86-4	1-10	n-butyl acetate
64742-95-6.	1-10	naphtha petroleum, light aromatic solvent
822-06-0	<=0.2	hexamethylene diisocyanate

SECTION 4 FIRST AID MEASURES

D

Description of first aid measure	es e
Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.

Version No: 4.7 Page 3 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. ► If swallowed do **NOT** induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. ▶ Observe the patient carefully. Ingestion ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

Indication of any immediate medical attention and special treatment needed

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- ▶ Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.

Seek medical advice.

- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- ▶ Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Figure 3 Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk.
- Water spray or fog may cause frothing and should be used in large quantities.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the	ne substrate or mixture
Fire Incompatibility	► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2)

carbon monoxide (CO)

isocyanates

hydrogen cyanide

and minor amounts of

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

Burns with acrid black smoke

HAZCHEM

Page 4 of 17 Version No: 4.7 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

Personal precautions, protective equipment and emergency procedures

Environmental precautions

Methods and material for containment and cleaning up

► Remove all ignition sources.

Clean up all spills immediately.

- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Figure 1 Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- ► Control source of leakage (where applicable).
- Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- ► Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- ▶ Decontaminate and remove personal protective equipment.
- Return to normal operation.
- ► Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of: Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90%

Let stand for 24 hours

Major Spills

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A liquid surfactant

sodium carbonate 5-10% water to 100% Formulation B liquid surfactant 0.2-2% concentrated ammonia 3-8% water to 100% Formulation C ethanol, isopropanol or butanol 50%

concentrated ammonia 5% 100% water to

After application of any of these formulae, let stand for 24 hours.

0 2-2%

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ► DO NOT reseal container if contamination is suspected.
- ▶ Open all containers with care.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.

Continued...

SECTION 6 ACCIDENTAL RELEASE MEASURES

See section 8

See section 12

- Minor Spills

Version No: 4.7 Page 5 of 17 Issue Date: 13/05/2020

Altex E~Line 949 Part B

Print Date: 13/05/2020

- ▶ Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand earth or vermiculite
- ▶ Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
- ► Earth all lines and equipment.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Consider storage under inert gas.

- Store in original containers in approved flammable liquid storage area.
- ► Store away from incompatible materials in a cool, dry, well-ventilated area.
- ions, basements or areas where vapours may be trapped
- No smoking, naked lights, heat or ignition sources.
- ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access
- ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- ▶ Keep adsorbents for leaks and spills readily available.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate): Other information

- Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents

for commercial quantities of isocyanates:

- Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken
- ▶ Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)
- Fransfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.

Conditions for safe storage, including any incompatibilities

▶ Packing as supplied by manufacturer.

- ▶ Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

Suitable container

- For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any

Version No: **4.7** Page **6** of **17** Issue Date: **13/05/2020**

Altex E~Line 949 Part B

spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

For alkyl aromatics

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- ▶ Microwave conditions give improved yields of the oxidation products.
- ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- ▶ Aromatics can react exothermically with bases and with diazo compounds.

· Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.

Storage incompatibility

- · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- lsocyanates participate in Diels-Alder reactions, functioning as dienophiles
- Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam
- and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- Do NOT reseal container if contamination is expected
- Open all containers with care
- Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds.. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions
- ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

- X Must not be stored together
- May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hexamethylene diisocyanate polymer	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	n-butyl acetate	n-Butyl acetate	150 ppm / 713 mg/m3	950 mg/m3 / 200 ppm	Not Available	Not Available
Australia Exposure Standards	hexamethylene diisocyanate	Hexamethylene diisocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
hexamethylene diisocyanate polymer	Hexamethylene diisocyanate polymer	7.8 mg/m3	86 mg/m3	510 mg/m3
n-butyl acetate	Butyl acetate, n-	Not Available	Not Available	Not Available

Version No: 4.7 Page 7 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

					,
naphtha petroleum, light aromatic solvent	Naphtha (coal tar); includes solvent naphtha, petroleum (64742-88-7), naphtha (petroleum) light aliphatic, rubber solvent (64742-89-8), heaevy catalytic cracked (64741-54-4), light straight run (64741-46-4), heavy aliphatic solvent (64742-96-7), high flash aromatic and aromatic solvent naphtha (64742-95-6)		1,200 mg/m3	6,700 mg/m3	40,000 mg/m3
hexamethylene diisocyanate	Hexamethylene diisocyanate; (1,6-Diisocyanatohexane)		0.018 ppm	0.2 ppm	3 ppm
Ingredient	Original IDLH	Revised IDLH			
hexamethylene diisocyanate polymer	Not Available	Not Available			
n-butyl acetate	1,700 ppm	Not Available			
naphtha petroleum, light aromatic solvent	Not Available	Not Available			
hexamethylene diisocyanate	Not Available	Not Available			

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

	Type of Contaminant:	Air Speed:
	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active	1-2.5 m/s (200-500
ı	generation into zone of rapid air motion)	f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- All processes in which isocvanates are used should be enclosed wherever possible.
- ▶ Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocvanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Personal protection

- Safety glasses with side shields.
- Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

NOTE:

The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Version No: 4.7 Page 8 of 17 Issue Date: 13/05/2020

Altex E~Line 949 Part B

Print Date: 13/05/2020

Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact.
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- ▶ Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- ssary and then use only minimum amount
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Body protection

Other protection

See Other protection below

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Evewash unit.
- ▶ Ensure there is ready access to a safety shower.
- ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Altex E~Line 949 Part B

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NATURAL RUBBER	С

Respiratory protection

Full face respirator with supplied air.

- ► Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

Version No: 4.7 Page 9 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

NEOPRENE	c
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
TEFLON	С
VITON/BUTYL	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

- ▶ In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- ▶ However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- ► Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable
- ▶ Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- ▶ Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Moisture sensitive. Clear Colour with Characteristic Odour		
Physical state	Liquid	Relative density (Water = 1)	1.13
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	444
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	353.982
Initial boiling point and boiling range (°C)	137	Molecular weight (g/mol)	Not Available
Flash point (°C)	32	Taste	Not Available
Evaporation rate	0.9 BuAC = 1	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.3	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	10
Vapour pressure (kPa)	1.3	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4.0	VOC g/L	113

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Version No: 4.7 Page 10 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness.

The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment.

Inhalation hazard is increased at higher temperatures.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Skin Contact

The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocvanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

Chronic

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw).

The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

Animal testing shows that polymeric MDI can damage the nasal cavities and lungs, causing inflammation and increased cell growth. This product contains a polymer with a functional group considered to be of high concern. Isothiocyanates may cause hypersensitivity of the skin

CONTAINS free organic isocvanate. Mixing and application requires special precautions and use of personal protective gear [APMF]

Altex E~Line 949 Part B	TOXICITY Not Available	IRRITATION Not Available
hexamethylene diisocyanate polymer	TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation (rat) LC50: 4.625 mg/l/1he ^[2] Oral (rat) LD50: approximately2000 mg/kg ^[1]	IRRITATION Skin (rabbit): 500 mg - moderate

Version No: 4.7 Page 11 of 17 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 3200 mg/kg ^[2]	Eye (human): 300 mg	
	Inhalation (rat) LC50: 1.802 mg/l4 h ^[1]	Eye (rabbit): 20 mg (open)-SEVERE	
n-butyl acetate	Oral (rat) LD50: =10700 mg/kg ^[2]	Eye (rabbit): 20 mg/24h - moderate	
		Eye: no adverse effect observed (not irritating) ^[1]	
		Skin (rabbit): 500 mg/24h-moderate	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
naphtha petroleum, light	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
aromatic solvent	Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2]	Skin: adverse effect observed (irritating) ^[1]	
	Oral (rat) LD50: >4500 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: =570 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
hexamethylene diisocyanate	Inhalation (rat) LC50: 0.06 mg/l/4h ^[2]	Skin: adverse effect observed (corrosive) ^[1]	
	Oral (rat) LD50: =710 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]	
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

HEXAMETHYLENE DIISOCYANATE POLYMER

Bayer SDS ** Ardex SDS

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce

N-BUTYL ACETATE

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acvolic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories

such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

Internation Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA)

Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.: 1998

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe]

For Low Boiling Point Naphthas (LBPNs):

Acute toxicity:

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific. These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive

Version No: **4.7** Page **12** of **17** Issue Date: **13/05/2020**

Altex E~Line 949 Part B

Print Date: 13/05/2020

results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol. However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals' lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For C9 aromatics (typically trimethylbenzenes – TMBs)

Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively.

Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin.

Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing.

Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation.

Version No: **4.7** Page **13** of **17** Issue Date: **13/05/2020**

Altex E~Line 949 Part B

9/10 Part R Print Date: 13/05/2020

Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants). Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials. Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable For 1,6-hexamethylene diisocyanate (HDI): Exposures to HDI are often associated with exposures to its prepolymers, one of which is widely used as a hardener in automobile and airplane paints. Both the prepolymers and the native substance may cause asthma. HDI is corrosive to the skin and eye, and will sensitise the skin and **HEXAMETHYLENE** airway. Most of the toxicity is in the upper airway (nose), although animal testing did not show that HDI caused cancer. In animal tests, HDI did DIISOCYANATE not cause mutations, genetic damage, reduce fertility, or cause developmental toxicity. Aromatic and aliphatic diisocyanates may cause airway toxicity and skin sensitization. Monomers and prepolymers exhibit similar respiratory effect. Of the several members of diisocyanates tested on experimental animals by inhalation and oral exposure, some caused cancer while others produced a harmless outcome. This group of compounds has therefore been classified as cancer-causing. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent Altex E~Line 949 Part B & asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible HEXAMETHYLENE airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal DIISOCYANATE lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Altex E~Line 949 Part B & The following information refers to contact allergens as a group and may not be specific to this product. **HEXAMETHYLENE** Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact **DIISOCYANATE POLYMER &** eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, **HEXAMETHYLENE** involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the DIISOCYANATE distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia. For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine. Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood Altex E~Line 949 Part B & vessels, redness and irritation. NAPHTHA PETROLEUM, Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing LIGHT AROMATIC SOLVENT the chemical causes headache, fatigue, nervousness and drowsiness. Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils. Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations. Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity. **HEXAMETHYLENE DIISOCYANATE POLYMER &** No significant acute toxicological data identified in literature search. **HEXAMETHYLENE** DIISOCYANATE **HEXAMETHYLENE** The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of **DIISOCYANATE POLYMER &** vesicles, scaling and thickening of the skin. N-BUTYL ACETATE **Acute Toxicity** Carcinogenicity × × Skin Irritation/Corrosion Reproductivity V Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin v STOT - Repeated Exposure ×

Legend:

Aspiration Hazard

🗶 – Data either not available or does not fill the criteria for classification

🗸 – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

sensitisation Mutagenicity

Page 14 of 17 Version No: 4.7 Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

ENDPOINT TEST DURATION (HR) **SPECIES** VALUE SOURCE Altex E~Line 949 Part B Not Not Not Not Available Not Available Available Available Available **ENDPOINT TEST DURATION (HR) SPECIES** VALUE SOURCE LC50 Fish 8.9mg/L 2 96 hexamethylene diisocyanate EC50 48 Crustacea 127mg/L 2 polymer EC50 72 Algae or other aquatic plants >1-mg/L 2 EC₀ 24 Crustacea >=1-mg/L 2 ENDPOINT TEST DURATION (HR) **SPECIES** VALUE SOURCE LC50 96 Fish 18mg/L 4 48 Crustacea =32ma/L n-butyl acetate EC50 96 Algae or other aquatic plants 1.675mg/L 3 EC90 72 Algae or other aquatic plants 1-540.7ma/L 2 NOEC 2 504 Crustacea 23.2mg/L **ENDPOINT TEST DURATION (HR)** SPECIES VALUE SOURCE Fish 2 LC50 96 4.1mg/L naphtha petroleum, light EC50 48 Crustacea 3.2mg/L 2 aromatic solvent 2 FC50 72 Algae or other aquatic plants >1-ma/L NOEC 72 Algae or other aquatic plants =1mg/L 1 **TEST DURATION (HR)** SPECIES SOURCE **ENDPOINT** VALUE LC50 96 22mg/L 1 hexamethylene diisocyanate EC50 72 2 Algae or other aquatic plants >77.4mg/L NOEC 72 Algae or other aquatic plants 4.9mg/L 2 Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite Leaend: V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For 1,2,4 - Trimethylbenzene:

Half-life (hr) air: 0.48-16;

Half-life (hr) H2O surface water: 0.24 -672;

Half-life (hr) H2O ground: 336-1344;

Half-life (hr) soil: 168-672;

Henry's Pa m3 /mol: 385 -627;

Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance.

Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days).

Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1.2.4-trimethylbenzene

Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic

Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene is moderately toxic toxic

Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks.

Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms

For Isocyanate Monomers:

Environmental Fate: Isocyanates, (di- and polyfunctional isocyanates), are commonly used to make various polymers, such as polyurethanes. Polyurethanes find significant application in the manufacture of rigid and flexible foams. They are also used in the production of adhesives, elastomers, and coatings.

Atmospheric Fate: These substances are not expected to be removed from the air via precipitation washout or dry deposition.

Terrestrial Fate: These substances are expected to sorb strongly to soil. Migration to groundwater and surface waters is not expected to occur.

Aquatic Fate: Breakdown by water, (hydrolysis), is the primary fate mechanism for the majority of commercial isocyanate monomers, however, the low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates. These substances strongly sorb to suspended particulates in water. In the absence of hydrolysis, sorption to solids, (e.g., sludge and sediments), will be the primary mechanism of removal. Biological breakdown is minimal for most compounds and evaporation is negligible. Evaporation from surface water is expected to take years. In wastewater treatment this process is not expected to be significant. Isocyanates will react with water producing carbon dioxide and forming a solid mass, which is insoluble.

Biodegradation: Breakdown of these substances in oxygenated and low oxygen environments is not expected to occur. Most of the substances take several months to degrade. Degradation of the hydrolysis products will occur at varying rates.

Ecotoxicity: These substances are not expected to accumulate/biomagnify in the environment. These substances are toxic if inhaled. These substances are harmful to aquatic

Version No: 4.7 Page **15** of **17** Issue Date: 13/05/2020

Print Date: 13/05/2020 Altex E~Line 949 Part B

organisms and may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
hexamethylene diisocyanate polymer	HIGH	HIGH
n-butyl acetate	LOW	LOW
hexamethylene diisocyanate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
hexamethylene diisocyanate polymer	LOW (LogKOW = 7.5795)
n-butyl acetate	LOW (BCF = 14)
hexamethylene diisocyanate	LOW (LogKOW = 3.1956)

Mobility in soil

Ingredient	Mobility
hexamethylene diisocyanate polymer	LOW (KOC = 18560000)
n-butyl acetate	LOW (KOC = 20.86)
hexamethylene diisocyanate	LOW (KOC = 5864)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ▶ Reuse
- ► Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	•3Y

Land transport (ADG)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL
	(including paint thinning or reducing compound)

Version No: 4.7 Page **16** of **17** Issue Date: 13/05/2020 Print Date: 13/05/2020

Altex E~Line 949 Part B

Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)			
Transport hazard class(es)	ICAO/IATA Class	3 Not Applicable		
Transport nazara orass(cs)	ERG Code	3L		
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		366	
	Cargo Only Maximum Qty / Pack		220 L	
	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo Limited Maximum Qty / Pack		10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Packing group	
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

HEXAMETHYLENE DIISOCYANATE POLYMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

N-BUTYL ACETATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Chemical Footprint Project - Chemicals of High Concern List

HEXAMETHYLENE DIISOCYANATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Version No: **4.7** Page **17** of **17** Issue Date: **13/05/2020**

Altex E~Line 949 Part B

Print Date: 13/05/2020

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (n-butyl acetate; naphtha petroleum, light aromatic solvent; hexamethylene diisocyanate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (hexamethylene diisocyanate polymer)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (hexamethylene diisocyanate polymer)
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	13/05/2020
Initial Date	18/09/2017

SDS Version Summary

Version	Issue Date	Sections Updated
3.7.1.1.1	13/05/2020	Acute Health (inhaled), Acute Health (skin), Classification, Disposal, Engineering Control, Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), First Aid (eye), Handling Procedure, Ingredients, Personal Protection (other), Spills (major), Storage (storage requirement), Storage (suitable container), Transport

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

 ${\tt PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.