Altex High Build Rust Barrier ### Resene Paints (Australia) Limited Version No: 5.10 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **14/05/2020** Print Date: **14/05/2020** S.GHS.AUS.EN ### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Altex High Build Rust Barrier | | |-------------------------------|--|--| | Synonyms | Not Available | | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | industrial coating | |--------------------------|--------------------| | | | ### Details of the supplier of the safety data sheet | Registered company name | Resene Paints (Australia) Limited | | |-------------------------|--|--| | Address | 4 Link Drive Queensland 4207 Australia | | | Telephone | +61 7 55126600 | | | Fax | +61 7 55126697 | | | Website | www.resene.com.au | | | Email | Not Available | | #### **Emergency telephone number** | Association / Organisation | AUSTRALIAN POISONS CENTRE | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|---------------------------|------------------------------| | Emergency telephone numbers | 131126 | +61 1800 951 288 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | | |-------------------------------|---|--| | Classification ^[1] | Flammable Liquid Category 3, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Chronic Aquatic Hazard Category 2, Specific target organ toxicity - single exposure Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Skin Corrosion/Irritation Category 2, Reproductive Toxicity Category 2, Skin Sensitizer Category 1, Specific target organ toxicity - repeated exposure Category 1, Carcinogenicity Category 2, Acute Aquatic Hazard Category 2 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) SIGNAL WORD | DANGER ### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--| | H319 | Causes serious eye irritation. | | H336 | May cause drowsiness or dizziness. | | H411 | Toxic to aquatic life with long lasting effects. | | H371 | May cause damage to organs. | | H335 | May cause respiratory irritation. | | H315 | Causes skin irritation. | Version No: 5.10 Page 2 of 16 Issue Date: 14/05/2020 ### Altex High Build Rust Barrier Print Date: **14/05/2020** | H361 | Suspected of damaging fertility or the unborn child. | |------|---| | H317 | May cause an allergic skin reaction. | | H372 | Causes damage to organs through prolonged or repeated exposure. | | H351 | Suspected of causing cancer. | ### Supplementary statement(s) Not Applicable ### Precautionary statement(s) Prevention | P201 Obtain special instructions before use. P210 Keep away from heat/sparks/open flames/hot surfaces No smoking. P260 Do not breathe mist/vapours/spray. P271 Use in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P281 Use personal protective equipment as required. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use only non-sparking tools. | |--| | P260 Do not breathe mist/vapours/spray. P271 Use in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P281 Use personal protective equipment as required. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P271 Use in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P281 Use personal protective equipment as required. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P280 Wear protective gloves/protective clothing/eye protection/face protection. P281 Use personal protective equipment as required. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P281 Use personal protective equipment as required. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | 33.3. | | P249 Line only non-produing tools | | P242 Use only non-sparking tools. | | P243 Take precautionary measures against static discharge. | | P270 Do not eat, drink or smoke when using this product. | | P273 Avoid release to the environment. | | P272 Contaminated work clothing should not be allowed out of the workplace. | ### Precautionary statement(s) Response | IF exposed or concerned: Get medical advice/attention. | |--| | IF exposed or if you feel unwell: Call a POISON CENTER or doctor/physician. | | Specific treatment (see advice on this label). | | Take off contaminated clothing and wash before reuse. | | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | IF ON SKIN: Wash with plenty of water and soap. | | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | Call a POISON CENTER or doctor/physician if you feel unwell. | | If skin irritation or rash occurs: Get medical advice/attention. | | If eye irritation persists: Get medical advice/attention. | | Collect spillage. | | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | ### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | ### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|---| | Not Available | 1-10 | mineral turpentine | | 64742-95-6 | 10-20 | naphtha petroleum, light aromatic solvent | | 7779-90-0 | 10-20 | zinc phosphate | | 96-29-7 | <=0.5 | methyl ethyl ketoxime | ### **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures Eye Contact If this product comes in contact with the eyes: ▶ Wash out immediately with fresh running water. Version No: **5.10** Page **3** of **16** Issue Date: **14/05/2020** ### Altex High Build Rust Barrier Print Date: 14/05/2020 • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper Seek medical attention without delay; if pain persists or recurs seek medical attention. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ► Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. For thermal burns: ► Decontaminate area around burn. ▶ Consider the use of cold packs and topical antibiotics. For first-degree
burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. ▶ Use compresses if running water is not available ▶ Cover with sterile non-adhesive bandage or clean cloth. ▶ Do NOT apply butter or ointments; this may cause infection. ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) ▶ Cool the burn by immerse in cold running water for 10-15 minutes. ▶ Use compresses if running water is not available. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. ▶ Do NOT break blisters or apply butter or ointments; this may cause infection. Skin Contact ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): ▶ Lay the person flat. ► Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. ▶ Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up Check pulse and breathing to monitor for shock until emergency help arrives. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary ▶ Transport to hospital, or doctor, without delay If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. ► If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. ## Ingestion - Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink - Seek medical advice. - Avoid giving milk or oils. - Avoid giving alcohol. #### Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred. - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - ► Treatment should take into consideration both anionic and cation portion of the molecule. - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored. #### Treat symptomatically. Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for naphthalene intoxication: Naphthalene requires hepatic and microsomal activation prior to the production of toxic effects. Liver microsomes catalyse the initial synthesis of the reactive 1,2-epoxide intermediate which is subsequently oxidised to naphthalene dihydrodiol and alpha-naphthol. The 2-naphthoquinones are thought to produce haemolysis, the 1,2-naphthoquinones are thought to be responsible for producing cataracts in rabbits, and the glutathione-adducts of naphthalene-1,2-oxide are probably responsible for pulmonary toxicity. Suggested treatment regime: - Induce emesis and/or perform gastric lavage with large amounts of warm water where oral poisoning is suspected. - ▶ Instill a saline cathartic such as magnesium or sodium sulfate in water (15 to 30g). - ▶ Demulcents such as milk, egg white, gelatin, or other protein solutions may be useful after the stomach is emptied but oils should be avoided because they promote absorption. - If eyes/skin contaminated, flush with warm water followed by the application of a bland ointment. - ▶ Severe anaemia, due to haemolysis, may require small repeated blood transfusions, preferably with red cells from a non-sensitive individual. - Where intravascular haemolysis, with haemoglobinuria occurs, protect the kidneys by promoting a brisk flow of dilute urine with, for example, an osmotic diuretic such as mannitol. It may be useful to alkalinise the urine with small amounts of sodium bicarbonate but many researchers doubt whether this prevents blockage of the renal tubules. - ▶ Use supportive measures in the case of acute renal failure. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed. Version No: 5.10 Page 4 of 16 Issue Date: 14/05/2020 #### Altex High Build Rust Barrier Print Date: 14/05/2020 For poisonings involving monochloroacetate the following regime is advised (compare that for fluoroacetate): Experimental antidotes against fluoroacetate are said to be effective against chloroacetate. These include monoacetin (glyceral monoacetate), acetamide or ethanol - ▶ Induce vomiting immediately if possible - ▶ Gastric lavage with tap water unless convulsions/imminent convulsions make this impracticable. - Instill into the stomach sodium or magnesium sulfate in water (15-30 gm). - Although the clinical efficacy of monoacetin (glycerol monoacetate) is not established, it should probably be administered if available. The recommended dose is 0.5 ml/kg of undiluted fluid intramuscularly every half-hour for several hours and then at a reduced level for at least 12 hours. In the same dose monacetin may also be given intravenously after dilution with 5 parts of sterile isotonic saline. No preparation of monoacetin is known to be available on the market. Usual commercial fluid contains free glycerin and assays at 70% at best. even the use of nonsterile preparations must be considered. Injection may be expected to produce some sedation and vasodilation. Intramuscular injection sites must be varied because of local pain and oedema. Should parenteral administration be not feasible, the patient may drink a mixture of 100 ml of monacetin in 500 ml water. Repeat every hour. - If monoacetin is not available, acetamide or ethanol may be given in the same doses. - A short-acting barbiturate drug or diazepam may be tried to control convulsions. - Oxygen therapy and artificial ventilation as required. - It is doubtful that digitalis is ever warranted. Parenteral procainamide or quinidine may be given a therapeutic trial but in experimental poisonings these drugs have proved less successful than monacetin in controlling cardiac arrhythmias. - If possible, monitor the electrocardiogram continuously and secure chest electrodes for external defibrillation if it becomes necessary. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products 5th Ed1 For acute or short term repeated exposures to xvlene: - Figure 1.2 Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g., Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice, **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Comments Determinant Index Sampling
Time 1.5 gm/gm creatinine Methylhippu-ric acids in urine End of shift Last 4 hrs of shift 2 mg/min #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - ▶ Foam - ► Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. | Special hazards arising from the substrate or mixture | | | | | |---|--|--|--|--| | Fire Incompatibility | ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | | | | Advice for firefighters | | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | | | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) carbon monoxide (CO) phosphorus oxides (POx) silicon dioxide (SiO2) metal oxides other pyrolysis products typical of burning organic material. | | | | ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** **HAZCHEM** ### Personal precautions, protective equipment and emergency procedures •3Y Version No: 5.10 Issue Date: 14/05/2020 Page 5 of 16 ### Altex High Build Rust Barrier Print Date: 14/05/2020 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | wethous and material for conta | annient and cleaning up | |--------------------------------|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** Other information ## Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ Electrostatic discharge may be generated during pumping this may result in fire. ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - · Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. Safe handling Avoid generation of static electricity. - ► DO NOT use plastic buckets - ► Earth all lines and equipment. - ▶ Use spark-free tools when handling. - ▶ Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - ▶ Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin ### ▶ Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. Version No: 5.10 Page 6 of 16 Issue Date: 14/05/2020 Print Date: 14/05/2020 ### Altex High Build Rust Barrier Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities Suitable containe - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ► For materials with a viscosity of at
least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - ▶ attack some plastics, rubber and coatings - ▶ may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. ## For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. #### Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products - Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Storage incompatibility - Х Must not be stored together - May be stored together with specific preventions - May be stored together ### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ### **Control parameters** ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|--------------------|--------------------|-----------|---------------|---------------|---------------| | Australia Exposure Standards | mineral turpentine | Mineral turpentine | 480 mg/m3 | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|---|----------------|----------------|-----------------| | naphtha petroleum, light aromatic solvent | Naphtha (coal tar); includes solvent naphtha, petroleum (64742-88-7), naphtha (petroleum) light aliphatic, rubber solvent (64742-89-8), heaevy catalytic cracked (64741-54-4), light straight run (64741-46-4), heavy aliphatic solvent (64742-96-7), high flash aromatic and aromatic solvent naphtha (64742-95-6) | 1,200
mg/m3 | 6,700
mg/m3 | 40,000
mg/m3 | | zinc phosphate | Zinc phosphate (3:2) | 12
mg/m3 | 36
mg/m3 | 220
mg/m3 | | methyl ethyl ketoxime | Butanone oxime; (Ethyl methyl ketoxime) | 30 ppm | 56 ppm | 250 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | mineral turpentine | Not Available | Not Available | | naphtha petroleum, light aromatic solvent | Not Available | Not Available | | zinc phosphate | Not Available | Not Available | | methyl ethyl ketoxime | Not Available | Not Available | #### OCCUPATIONAL EXPOSURE BANDING | In one diams | Occupational Functions Band Batina | Occupational Functions Band Limit | |--------------|------------------------------------|-----------------------------------| | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | Version No: 5.10 Page 7 of 16 Issue Date: 14/05/2020 Print Date: 14/05/2020 ### Altex High Build Rust Barrier | naphtha petroleum, light aromatic solvent | E | ≤ 0.1 ppm | |---|--|--| | methyl ethyl ketoxime | Е | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into s
adverse health outcomes associated with exposure. The output of this pro
range of exposure concentrations that are expected to protect worker hea | ocess is an occupational exposure band (OEB), which corresponds to a | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min.) 0.5-1 m/s aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, (100-200 plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation (200-500 into zone of rapid air motion) f/min.) #### Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection # Eye and face protection - Safety glasses with side shields. - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and
remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ### Skin protection Hands/feet protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber ### NOTE: - Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact - ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and ### Continued... Version No: **5.10** Page **8** of **16** Issue Date: **14/05/2020** ### Altex High Build Rust Barrier Print Date: 14/05/2020 dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### **Body protection** See Other protection below #### ▶ Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Evewash unit. - ▶ Ensure there is ready access to a safety shower #### Other protection - ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the "Forsberg Clothing Performance Index" The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Altex High Build Rust Barrier | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum | Half-Face | Full-Face | Powered Air | |-------------------|------------|-----------------|-------------------------| | Protection Factor | Respirator | Respirator | Respirator | | up to 10 x ES | A-AUS | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | - | A-AUS / Class 1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Version No: **5.10** Page **9** of **16** Issue Date: **14/05/2020** ### Altex High Build Rust Barrier Print Date: 14/05/2020 as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | coloured viscous liquid with hydrocarbon odour | | | |--|--|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.31 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 350 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 900.763 | | Initial boiling point and boiling range (°C) | 149 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 35 | Taste | Not Available | | Evaporation rate | 0.4 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.5 | Volatile Component (%vol) | 34 | | Vapour pressure (kPa) | 4.3 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) |
4.3 | VOC g/L | 445 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. The material has NOT been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. Inhalation hazard is increased at higher temperatures. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a #### Inhaled reduction red blood cells and bleeding abnormalities. There may also be drowsiness. Isobutanol appears to be more toxic than n-butyl alcohol. It may result in narcosis and death. Inhalation of naphthalene vapour is linked with headache, loss of appetite, nausea, damage to the eyes and kidneys. According to animal testing, long term exposure may cause excessive weakness and increased salivation, weight loss, difficulty breathing, collapse, and evidence of damage to the skin, liver and lungs. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Version No: 5.10 Page 10 of 16 Issue Date: 14/05/2020 Print Date: 14/05/2020 Print Date: 14/05/2020 #### Altex High Build Rust Barrier Xylene is a central nervous system depressant Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of Ingestion corroborating animal or human evidence Ingestion of naphthalene and related compounds may produce abdominal cramps with nausea, vomiting, diarrhoea, headache, profuse sweating, listlessness, confusion, and in severe poisonings, coma with or without convulsions. Irritation of the bladder may also occur, producing urgency, painful urination, and the passage of brown or black urine with or without albumin or casts. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Application of isobutanol to human skin produced slight redness and blood congestion. Workers sensitised to naphthalene and related compounds show an inflammation of the skin with scaling and reddening. Some individuals show Skin Contact an allergic reaction. Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Exposure limits with "skin" notation indicate that vapour and liquid may be absorbed through intact skin. Absorption by skin may readily exceed vapour inhalation exposure. This material can cause eye irritation and damage in some persons. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Long term exposure to naphthalene has produced clouding of the lens (cataracts) in workers. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cancer Chronic growths were also more common in those animals exposed to isobutanol. Animal testing indicates that inhalation of naphthalene may increase the incidence of respiratory tumours and may aggravate chronic inflammation. Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in "metal fume fever"; also known as "brass chills", an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. TOXICITY IRRITATION Altex High Build Rust Barrier Not Available Not Available TOXICITY IRRITATION mineral turpentine Not Available Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: >1900 mg/kg^[1] Eye: no adverse effect observed (not irritating)[1]naphtha petroleum, light aromatic solvent Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2] Skin: adverse effect observed (irritating)^[1] Oral (rat) LD50: >4500 mg/kg[1] TOXICITY IRRITATION Oral (rat) LD50: >5000 mg/kg[2] Eye: no adverse effect observed (not irritating)[1] zinc phosphate Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Eye (rabbit): 0.1 ml - SEVERE Dermal (rabbit) LD50: 2-1.8 mg/kg^[2] methyl ethyl ketoxime Inhalation (rat) LC50: 20 mg/l/4h**[2] Oral (rat) LD50: >900 mg/kg^[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### Altex High Build Rust Barrier Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than itso- or cyclo-paraffins. The major classes of hydrogarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the Version No: **5.10** Page **11** of **16** Issue Date: **14/05/2020** #### Altex High Build Rust Barrier Print Date: 14/05/2020 gut lymph, but most hydrocarbons partly separate from fats and undergo
metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver. For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans. Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants). Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth MINERAL TURPENTINE weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials. Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. For C9 aromatics (typically trimethylbenzenes – TMBs) Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that NAPHTHA PETROLEUM. it sensitizes skin. LIGHT AROMATIC SOLVENT Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing. Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother. * [Devoe] . For methyl ethyl ketoxime (MEKO): At medium to high concentrations, MEKO increased the rate of liver tumours in animal testing. This seems to be due to the breakdown of MEKO into a cancer-causing substance, and occurred more often in males. MEKO does not seem to cause mutations. Repeated exposure appeared to cause effects on the nose, spleen, liver, kidney and blood. Animal testing suggests that MEKO did METHYL ETHYL KETOXIME not cause reproductive or developmental effects below 10mg/kg body weight/day. Mammalian lymphocyte mutagen *Huls Canada ** Merck Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation Altex High Build Rust Barrier caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red & NAPHTHA PETROLEUM. blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine. LIGHT AROMATIC SOLVENT Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation. Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness. Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations. Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, Altex High Build Rust Barrier involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the & METHYL ETHYL KETOXIME distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. **Acute Toxicity** Carcinogenicity • Skin Irritation/Corrosion Reproductivity V STOT - Single Exposure Serious Eye Damage/Irritation Respiratory or Skin V STOT - Repeated Exposure sensitisation × Mutagenicity Aspiration Hazard Version No: **5.10** Page **12** of **16** Issue Date: **14/05/2020** ### Altex High Build Rust Barrier Print Date: 14/05/2020 #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Altex High Build Rust Barrier | ENDPOINT | TEST DURATION (HR) | | SPECIES | | VALUE | SOURCE | |--|------------------|---|---------------|---------------------------------------|------|------------------|------------------| | | Not
Available | Not Available | | Not Available | | Not
Available | Not
Available | | mineral turpentine | ENDPOINT | TEST DURATION (HR) | | SPECIES | | VALUE | SOURCE | | | Not
Available | Not Available | | Not Available | | Not
Available | Not
Available | | naphtha petroleum, light
aromatic solvent | ENDPOINT | TEST DURATION (HR) | | SPECIES | | VALUE | SOURCE | | | LC50 | 96 | | Fish | | 4.1mg/L | 2 | | | EC50 | 48 | | Crustacea | | 3.2mg/L | 2 | | | EC50 | 72 | | Algae or other aquatic plants | | >1-mg/L | 2 | | | NOEC | 72 | | Algae or other aquatic plants | | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | S | PECIES | VAL | .UE | SOURCE | | | LC50 | 96 | Fi | sh | 0.00 |)1-0.58mg/L | 2 | | zinc phosphate | EC50 | 48 | C | Crustacea 0.001 | | 01-0.833mg/L | 2 | | | NOEC | 72 | Al | Algae or other aquatic plants 0.000 | | 0038608mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | 1
1
1 | SPECIES | 1 | VALUE | SOURCE | | | LC50 | 96 | | Fish | | 37.890mg/L | 3 | | |
EC50 | 48 | 1 | Crustacea | - 1 | ca.201mg/L | 2 | | methyl ethyl ketoxime | EC50 | 96 | | Algae or other aquatic plants | | 4.557mg/L | 3 | | | EC20 | 72 | | Algae or other aquatic plants | 1 | ca.55mg/L | 2 | | | NOEC | 72 | 1 | Algae or other aquatic plants | | ca.1.02mg/L | 2 | | Legend: | V3.12 (QSAR) | 1. IUCLID Toxicity Data 2. Europe ECI Aquatic Toxicity Data (Estimated) 4. (apan) - Bioconcentration Data 7. MET | US EPA, Ecoto | ox database - Aquatic Toxicity Data 5 | | | | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - ▶ adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16: Half-life (hr) H2O surface water: 0.24 -672; Half-life (hr) H2O ground: 336-1344; Half-life (hr) soil: 168-672; Henry's Pa m3 /mol: 385 -627; Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days). Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene. Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations. Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For C9 aromatics (typically trimethylbenzene - TMBs) Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative. In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation Version No: **5.10** Page **13** of **16** Issue Date: **14/05/2020** #### **Altex High Build Rust Barrier** Print Date: 14/05/2020 half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions. Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4-trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN 25550-14-5)). These three substances exceed 60% biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured. Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high. Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative. Ecotoxicity For Xvlenes: Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations. The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value. log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41. Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several
days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylghenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylp-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. Environmental Fate: Naphthalene may be reach surface water and soil through transportation in water or being carried by air. Most airborne naphthalene is in a vapour form and hence deposition is expected to be slow. A minimal amount of naphthalene emitted to the air is transported to other environmental components mostly by dry deposition. Naphthalene in surface water may volatililize into the atmosphere, depending on environmental condiditons. It remains in solution in water, with only small amounts associated with suspended material and benthic sediments. While naphthalene is readily volatilized from aerated soils, it adheres to soils with a high organic content. Adsorption to aquifer material reduces transportation of naphthalene through groundwater, and the presence of nonionic organic compounds such as tetrachloroethene may enhance sorption to materials that contain low carbon content. Bioconcentration of naphthalene is moderate in aquatic organisms. It is readily metabolized by fish, and invertebrates that are placed in pollutant free water rapidly eliminate any traces of the pollutant. While bioaccumulation in the food chain is unlikely, exposure of cows and chickens to naphthalene could lead to naphthalene being present in milk and eggs. While the data on the transport and partitioning of methylnaphthalenes in the environment is limited, the characteristics of these chemicals are similar to naphthalene, so they are expected to behave in a similar manner to naphthalene in the environment, and produce the same effects on aquatic organisms. Biodegradation of naphthalene occurs relatively quickly in aquatic systems. Methylnaphthalenes are biodegraded under aerobic conditions after adaptation. Degradation rates are highest in water constantly polluted with petroleum. Naphthalene biodegradation rates are higher in sediment than in the water column above it. Methylnaphthalenes biodegrades more slowly. Reported half-lives in sediments were 46 weeks for 1-methylnaphthalene and ranged from 14 to 50 weeks for 2-methylnaphthalene. In soils, the potential for biodegradation is an important factor for biological remediation of soil. Studies on biodegradation of PAHs suggest that adsorption to the organic matter significantly reduces the bioavailability for microorganisms, and thus the biodegradability, of PAHs, including naphthalene. Biodegradation is accomplished through the action of aerobic microorganisms and is reduced in anaerobic soil conditions. Naphthalene biodegrades to carbon dioxide in aerobic soils, with salicylate as an intermediate product. Abiotic degradation of naphthalene seldom occurs in soils. As with naphthalene, 1-Methylnaphthalene is easily volatilised from aerated soil, and the biodegradation half-life averages between 1.7 and 2.2 days Ecotoxicity: Acute toxicity data on naphthalene for several fish species (freshwater and marine), show 96h LC50 values range from 1.8 to 7.8 mg/L. Comparable results were obtained with other vertebrates (amphibians). From chronic toxicity tests, a precise NOEL is not clearly determined. A NOEC of 0.12 mg/L was observed in a 40 days test on juvenile pink salmon, but 50% mortality at 0.11 mg/L was calculated for trout fry exposed during hatching. Several data are also available for invertebrates, showing 48h EC50 values ranging from 2.1 to 24 mg/L. While chronic data on freshwater invertebrates and algae are questionable, a 50% photosynthesis reduction was observed at 2.8 mg/L in 4 hours experiments. QSAR prediction models give results consistent with experimental short-term data on fish daphnia and algae. For Phosphate: The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. Aquatic Fate: Lakes overloaded with phosphates is the primary catalyst for the rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is self-perpetuating because an anoxic condition at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes. For Zinc and its Compounds: BCF: 4 to 24,000. Environmental Fate: Zinc is capable of forming complexes with a variety of organic and inorganic groups and is an essential nutrient present in all organisms. Atmospheric Fate: Zinc concentrations in the air are relatively low, except near industrial sources, such as smelters. There is no estimate for the atmospheric lifetime of zinc, but, since zinc is transported long distances in air, its lifetime in air is at least on the order of days. Zinc is removed from the air by dry/wet deposition. Terrestrial Fate: Soil • Zinc may magnify in the soil if concentrations of the substance exceed 1632 ppm. The relative mobility of zinc in soil is determined by the same factors that affect its transport in aquatic systems, (i.e. solubility of the compound, pH, and salinity). The mobility of zinc in soil increases at lower soil pH, under oxidizing conditions, and at lower cation, (positive ion), exchange capacities. However, the amount of zinc in solution generally increases @ pH >7, in soils high in organic matter. Clay and metal oxides sorb zinc and tend to retard its mobility in soil. Zinc is more mobile at pH 4 than at pH 6.5 as a consequence of sorption. Under low oxygen conditions, zinc sulfide is the controlling species, which has low mobility. Plants - Zinc is not expected to concentrate in plants, however, this depends on plant species, soil pH, and soil composition. Aquatic Fate: Zinc readily adsorbs to sediment and suspended particles. The substance can persist in water indefinitely and can be toxic to aquatic life. Hydrous iron, manganese oxides, clay minerals, and organic material may help remove zinc from sediment since they adsorb the substance. Environmental toxicity of zinc in water is dependent upon the concentration of other minerals and the pH of the solution. Zinc remains as the free ion at lower pH levels. At high pH levels, zinc in solution is precipitated as zinc hydroxide, zinc carbonate, or calcium zincate. Ecotoxicity: Zinc concentrates moderately in aquatic organisms; concentration is higher in crustaceans and bivalve species than in fish. Zinc is not expected to magnify as it moves up the land-based food chain. Zinc can concentrate over 200,000 times in oysters. Copper can increase toxicity to fish and calcium can decrease toxicity. Zinc can accumulate in freshwater species at 5 -1,130 times the concentration present in the water. Crustaceans and fish accumulate zinc from water and food. The substance has been found in very high concentration in aquatic invertebrates. Sediment dwelling organisms have higher zinc concentrations than those living in the aqueous layer. Overexposures to zinc also have been associated with toxic effects in mammals, including man. Ingestion of zinc or zinc-containing compounds has resulted in a variety of effects in the gastrointestinal tract and blood in Issue Date: 14/05/2020 Version No: 5.10 Page 14 of 16 Print Date: 14/05/2020 ### **Altex High Build Rust Barrier** humans and animals. The substance may cause lesions in the liver, pancreas, and kidneys. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------|-------------------------|------------------| | methyl ethyl ketoxime | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |-----------------------|-----------------|--| | methyl ethyl ketoxime | LOW (BCF = 5.8) | | #### Mobility in soil | Ingredient | Mobility | |-----------------------|-------------------| | methyl ethyl ketoxime | LOW (KOC = 130.8) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment
methods - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - Fig from the from the container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - ▶ Recycling - ► Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** **Marine Pollutant** HAZCHEM •3Y ### Land transport (ADG) | UN number | 1263 | | |----------------------------|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | Packing group | | | | Environmental hazard | Environmentally hazardous | | Version No: 5.10 Page 15 of 16 Issue Date: 14/05/2020 Print Date: 14/05/2020 ### **Altex High Build Rust Barrier** Special provisions 163 223 367 Special precautions for user Limited quantity 5 L #### Air transport (ICAO-IATA / DGR) | UN number | 1263 | | | | |------------------------------|---|----------------------------------|-------------|--| | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | | | | ICAO/IATA Class | 3 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | NO / IATA Subrisk Not Applicable | | | | | ERG Code 3L | | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazardo | ous | | | | Special precautions for user | Special provisions | | A3 A72 A192 | | | | Cargo Only Packing Instructions | | 366 | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | | Passenger and Cargo Packing Instructions | | 355 | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | | ### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** ### Safety, health and environmental regulations / legislation specific for the substance or mixture ### MINERAL TURPENTINE IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable ### NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5}$ Chemical Footprint Project - Chemicals of High Concern List #### ZINC PHOSPHATE IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### METHYL ETHYL KETOXIME IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Chemical Footprint Project - Chemicals of High Concern List ### **National Inventory Status** | National Inventory | Status | |--------------------|--------| | Australia - AICS | Yes | Version No: 5.10 Page 16 of 16 Issue Date: 14/05/2020 Print Date: 14/05/2020 ### **Altex High Build Rust Barrier** | Canada - DSL | Yes | | |-------------------------------|---|--| | Canada - NDSL | No (naphtha petroleum, light aromatic solvent; methyl ethyl ketoxime) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (zinc phosphate) | | | Vietnam - NCI | Yes | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 14/05/2020 | |---------------|------------| | Initial Date | 31/10/2017 | ### **SDS Version Summary** | Version | Issue Date | Sections Updated | |------------|------------|--| | 4.10.1.1.1 | 14/05/2020 | Acute Health (inhaled), Chronic Health, Classification, Fire Fighter (fire/explosion hazard), Ingredients, Physical Properties, Storage (storage incompatibility), Use | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.