Altex E~Line 379 Part A (MCR)

Resene Paints (Australia) Limited

Version No: 4.8

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **26/07/2020** Print Date: **26/07/2020** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex E~Line 379 Part A (MCR)
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Delevent identified uses	Dort A of a multi companent industrial coating
Relevant identified uses	Part A of a multi-component industrial coating

Details of the supplier of the safety data sheet

Registered company name	Resene Paints (Australia) Limited
Address	64 Link Drive Queensland 4207 Australia
Telephone	+61 7 55126600
Fax	+61 7 55126697
Website	www.resene.com.au
Email	Not Available

Emergency telephone number

Association / Organisation	AUSTRALIAN POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	131126	+61 1800 951 288	
Other emergency telephone numbers	Not Available	+61 2 9186 1132	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification ^[1]	Flammable Liquid Category 3, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 2, Acute Aquatic Hazard Category 3, Reproductive Toxicity Category 2, Skin Sensitizer Category 1, Carcinogenicity Category 2, Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD

H412

WARNING

Harmful to aquatic life with long lasting effects.

Hazard statement(s)	
H226	Flammable liquid and vapour.
H319	Causes serious eye irritation.
H371	May cause damage to organs.
H361	Suspected of damaging fertility or the unborn child.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.

Version No: 4.8 Page 2 of 15 Issue Date: 26/07/2020 Print Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P233	Keep container tightly closed.
P260	Do not breathe mist/vapours/spray.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.
P309+P311	IF exposed or if you feel unwell: Call a POISON CENTER or doctor/physician.
P321	Specific treatment (see advice on this label).
P363	Wash contaminated clothing before reuse.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
123-86-4	10-20	n-butyl acetate
108-65-6	1-10	propylene glycol monomethyl ether acetate, alpha-isomer
Not Available	1-10	xylenes
123-54-6	1-10	2.4-pentanedione

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Description of mist ald measure	
Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.

Version No: **4.8** Page **3** of **15** Issue Date: **26/07/2020**Print Date: **26/07/2020**Print Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Inhalation

Inhalation

Inhalation

Inhalation

Ingestion

Ingesti

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

for simple esters:

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

F Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- ▶ Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ► Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- ► Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- ► May be violently or explosively reactive.
- ▶ Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ If safe, switch off electrical equipment until vapour fire hazard removed.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools
 - ► DO NOT approach containers suspected to be hot.
 - ▶ Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

Fire Fighting

- ► Liquid and vapour are flammable.
- ► Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
 - Moderate explosion hazard when exposed to heat or flame.
 - Vapour may travel a considerable distance to source of ignition.
 Heating may cause expansion or decomposition leading to violent rupture of containers.
 - On combustion, may emit toxic fumes of carbon monoxide (CO).

Version No: 4.8 Issue Date: 26/07/2020 Page 4 of 15

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

Combustion products include carbon dioxide (CO2) carbon monoxide (CO)

metal oxides

other pyrolysis products typical of burning organic material.

When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles

HAZCHEM

•3Y

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Remove all ignition sources Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes Minor Spills ▶ Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. ▶ Collect residues in a flammable waste container. ▶ Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water course. ► Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. **Major Spills** Stop leak if safe to do so. ▶ Water spray or fog may be used to disperse /absorb vapour. ► Contain spill with sand, earth or vermiculite ▶ Use only spark-free shovels and explosion proof equipment. ▶ Collect recoverable product into labelled containers for recycling. ▶ Absorb remaining product with sand, earth or vermiculite Collect solid residues and seal in labelled drums for disposal Wash area and prevent runoff into drains.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

► Containers, even those that have been emptied, may contain explosive vapours.

▶ If contamination of drains or waterways occurs, advise emergency services.

- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
 - ► Earth all lines and equipment Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
 - ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

- Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- DO NOT store in pits, depressions, basements or are

No smoking, naked lights, heat or ignition sources

- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.

Version No: 4.8 Page 5 of 15 Issue Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- ▶ Keep adsorbents for leaks and spills readily available.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors: inspect tank vents during winter conditions for vapour/ ice build-up.
- Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)

Suitable containe

Storage incompatibility

- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

For aluminas (aluminium oxide):

Incompatible with hot chlorinated rubber.

In the presence of chlorine trifluoride may react violently and ignite.

-May initiate explosive polymerisation of olefin oxides including ethylene oxide.

-Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.

- Produces exothermic reaction with oxygen difluoride.
- -May form explosive mixture with oxygen difluoride.
- -Forms explosive mixtures with sodium nitrate.
- -Reacts vigorously with vinyl acetate.

Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt.

n-Butvl acetate:

- reacts with water on standing to form acetic acid and n-butyl alcohol
- reacts violently with strong oxidisers and potassium tert-butoxide
- is incompatible with caustics, strong acids and nitrates
- dissolves rubber, many plastics, resins and some coatings

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- ▶ Aromatics can react exothermically with bases and with diazo compounds

Acetic acid:

- ▶ vapours forms explosive mixtures with air (above 39 C.)
- reacts violently with bases such as carbonates and hydroxides (giving off large quantities of heat), oxidisers, organic amines, acetaldehyde,
- reacts (sometimes violently), with strong acids, aliphatic amines, alkanolamines, alkylene oxides, epichlorohydrin, acetic anhydride, 2-aminoethanol, ammonia, ammonium nitrate, bromine pentafluoride, chlorosulfonic acid, chromic acid, chromium trioxide, ethylenediamine, ethyleneimine, hydrogen peroxide, isocyanates, oleum, perchloric acid, permanganates, phosphorus isocyanate, phosphorus trichloride, sodium peroxide, xylene
- attacks cast iron, stainless steel and other metals, forming flammable hydrogen gas
- ▶ attacks many forms of rubber, plastics and coatings
- ▶ Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- ▶ Esters may be incompatible with aliphatic amines and nitrates.

Propylene glycol monomethyl ether acetate:

- ▶ may polymerise unless properly inhibited due to peroxide formation
- ▶ should be isolated from UV light, high temperatures, free radical initiators
- ▶ may react with strong oxidisers to produce fire and/ or explosion
- reacts violently with with sodium peroxide, uranium fluoride
- ▶ is incompatible with sulfuric acid, nitric acid, caustics, aliphatic amines, isocyanates, boranes

For 2,4-pentanedione:

- Segregate from halogens.
- ▶ Store away from steel, nickel, zinc, galvanized iron, tinned iron, copper and copper alloys.

Version No: 4.8 Page 6 of 15 Issue Date: 26/07/2020 Print Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

- Х Must not be stored together
- 0 - May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	n-butyl acetate	n-Butyl acetate	150 ppm / 713 mg/m3	950 mg/m3 / 200 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
n-butyl acetate	Butyl acetate, n-	Not Available	Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available
2,4-pentanedione	Pentanedione, 2,4-; (Acetylacetone)	75 ppm	110 ppm	200 ppm

Ingredient	Original IDLH	Revised IDLH
n-butyl acetate	1,700 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available
2,4-pentanedione	Not Available	Not Available

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
2,4-pentanedione	E	≤ 0.1 ppm		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Version No: **4.8** Page **7** of **15** Issue Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields.

► Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 minPoor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

▶ Overalls.

- ► PVC Apron.
- ▶ PVC protective suit may be required if exposure severe
- ► Evewash unit
- ► Ensure there is ready access to a safety shower

Other protection

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
 Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Version No: 4.8 Page 8 of 15 Issue Date: 26/07/2020 Print Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Altex E~Line 379 Part A (MCR)

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NATURAL RUBBER	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
E	С
E/EVAL/PE	С
PVA	С
PVC	С
EFLON	С
ITON	С
'ITON/BUTYL	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Coloured with Characteristic Odour		
Physical state	Liquid	Relative density (Water = 1)	1.37
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	417
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	133	Molecular weight (g/mol)	Not Available
Flash point (°C)	30	Taste	Not Available
Evaporation rate	0.9 BuAC = 1	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.5	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	32
Vapour pressure (kPa)	1	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4.1	VOC g/L	435

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Version No: **4.8** Page **9** of **15** Issue Date: **26/07/2020**Print Date: **26/07/2020**Print Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information	οn	toxicological	effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness.

At sufficiently high doses the material may be neurotoxic (i.e. poisonous to the nervous system).

Animal testing showed no toxic effects from inhaling PGMEA except at very high concentrations. A concentration of 1000 parts per million (0.1%) caused no effects.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion.

Inhaled

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

High or repeated doses of 2,4-pentanedione produced difficulty in breathing, brain disease and central nervous system depression with damage to the thymus in experimental animals. Inhalation of its vapours may cause unconsciousness.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of 2,4-pentanedione (acetylacetone) may cause irritation of the mouth, gullet and stomach, abdominal discomfort, nausea, vomiting, diarrhoea, dizziness, malaise and fainting.

At sufficiently high doses the material may be neurotoxic (i.e. poisonous to the nervous system).

Skin Contact

There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.

Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation.

Animal testing showed repeated application of commercial grade PGMEA to skin caused slight redness and very mild exfoliation. 2,4-Pentadione may produce acute itchy rash, skin inflammation, reddening, pain and allergic rashes. Prolonged contact may cause burns,

2,4-Pentadione may produce acute itchy rash, skin inflammation, reddening, pain and allergic rashes. Prolonged contact may cause burns, ulceration and bleeding.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

This material can cause eye irritation and damage in some persons.

Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight redness of the conjunctiva and slight injury to the cornea in animal testing.

Exposure to 2, 4-pentadione may produce excessive redness of the eyes and swelling of the conjunctiva, blinking and tearing. However, corneal damage is unlikely.

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility.

Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm.

Chronic

Animal testing shows repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) causes mild liver and kidney damage. The beta-isomer, a minor component, may cause birth defects if PGMEA is inhaled during pregnancy. Otherwise, PGMEA has not been shown to have developmental toxicity. It may damage the foetus but only at levels that are also toxic to the mother.

Repeated overexposure to 200 ppm 2,4-pentanedione vapour may result in inflammation of the nasal mucosa. Higher concentrations may produce central nervous system effects, and immune system and bone marrow deficits.

Speculative discussions suspects that the absorption of UVB by the sunscreens chemical agents may enhance free radical formation, DNA damage and possible increase in melanoma formation as well as, decrease in Vitamin D production, which has been suggested to potentiate melanoma, breast and colonic cancer formation.

Altex E~Line 379 Part A (MCR)	TOXICITY Not Available	IRRITATION Not Available
	TOXICITY Dermal (rabbit) LD50: 3200 mg/kg ^[2]	IRRITATION Eye (human): 300 mg
n-butyl acetate	Inhalation (rat) LC50: 1.802 mg/l4 h ^[1]	Eye (rabbit): 20 mg (open)-SEVERE
	Oral (rat) LD50: =10700 mg/kg ^[2]	Eye (rabbit): 20 mg/24h - moderate
		Eye: no adverse effect observed (not irritating) ^[1] Skin (rabbit): 500 mg/24h-moderate
		Skin: no adverse effect observed (not irritating) ^[1]

Version No: **4.8** Page **10** of **15** Issue Date: **26/07/2020**Alexy F. Line **270** Part A (MCD)

Print Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

propylene glycol monomethyl	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) $^{[1]}$
ether acetate, alpha-isomer	Inhalation (rat) LC50: 6510.0635325 mg/l/6h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (rat) LD50: 5155 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 787.401 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
O. A. manufamar Plana	Oral (rat) LD50: 55 mg/kg ^[2]	Skin (rabbit): 0.476 - SEVERE
2,4-pentanedione		Skin (rabbit): 10 mg/24h
		Skin (rabbit): 488 mg - mild
		Skin: no adverse effect observed (not irritating) ^[1]
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine.

Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation.

Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness.

Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils.

Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations.

Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity.

N-BUTYL ACETATE

Altex E~Line 379 Part A (MCR)

Generally,linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as

flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

Internation! Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu

For propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body.

As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene alvoid ethers are unlikely to possess genetic toxicity.

Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects.

Altex E~Line 379 Part A (MCR) & PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER Version No: **4.8** Page **11** of **15** Issue Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

N-BUTYL ACETATE & 2,4-PENTANEDIONE

The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity	×	Carcinogenicity	~
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Altex E~Line 379 Part A (MCR)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	18mg/L	4
	EC50	48	Crustacea	=32mg/L	1
n-butyl acetate	EC50	96	Algae or other aquatic plants	1.675mg/L	3
	EC90	72	Algae or other aquatic plants	1-540.7mg/L	2
	NOEC	504	Crustacea	23.2mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	100mg/L	1
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	48	Crustacea	373mg/L	2
ether acctate, alpha-isomer	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	96	Algae or other aquatic plants	>=1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	60.1mg/L	4
2,4-pentanedione	EC50	48	Crustacea	25.9mg/L	2
	EC50	72	Algae or other aquatic plants	8.36mg/L	2
	NOEC	72	Algae or other aquatic plants	3.2mg/L	2
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPnM and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble.

Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB.

Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are "readily biodegradable" under aerobic conditions. In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates.

For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16;

Half-life (hr) H2O surface water: 0.24 -672;

Half-life (hr) H2O ground: 336-1344;

Half-life (hr) soil: 168-672;

Henry's Pa m3 /mol: 385 -627;

Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance.

Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days).

Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations.

Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-

Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations

Version No: 4.8 Page 12 of 15 Issue Date: 26/07/2020 Print Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

required to induce toxicity in laboratory animals are not likely to be reached in the environment.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For UV Filters:

Aquatic Fate/Ecotoxicity: UV filters have been detected in surface water, wastewater and fish, and some of them having an action similar to that of an estrogen in fish. At present, little is known about their additional hormonal activities in different hormonal receptor systems despite their increasing use and environmental persistence. Besides estrogenic activity, UV filters may have additional activities, both agonistic and antagonistic, in aquatic organisms. Although most of the UV filters exert hormonal effects at concentrations that are orders of magnitude higher than in the environment, wide distribution and exposure to UV filter mixtures may have environmental consequences due to additive effects. The UV filters 4-methylbenzylidene camphor, benzophenone-3, benzophenone-4, octyl methoxycinnamate, octocrylene and homosalate that repeatedly were detected in the aquatic environment, may contribute with their multiple hormonal activities in a complex manner to the mixture of endocrine disrupting chemicals already present in surface water and fish. For most of the UV filters with multiple hormonal activities residues in the aquatic environment and in biota are not yet known, and therefore their environmental relevance remains elusive. for 2.4-pentanedione:

log Kow : 1.9-2.25 BOD 5 if unstated: 5.60% Harmful to aquatic life/ birdlife.

Environmental fate:

Biodegradation of 2,4-pentadione occurs in the soil. Leaching into ground water is expected to occur. Biodegradation in water is expected to proceed at a moderate rate. No significant bioaccumulation is expected to occur.

In air 2,4-pentadione undergoes photochemical degradation to hydroxyl radicals. The material is expected to be removed from air by wet deposition with a half-life between 10 and 30 davs.

For n-Butyl Acetate:

Koc: ~200; log Kow: 1.78; Half-life (hr) air: 144:

Half-life (hr) H2O surface water: 178 - 27156;

Henry's atm: m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7%;

COD: 78%; ThOD: 2.207; BCF: 4-14.

Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days.

Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae

DO NOT discharge into sewer or water

Persistence and degradability

•		
Ingredient	Persistence: Water/Soil	Persistence: Air
n-butyl acetate	LOW	LOW
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
2,4-pentanedione	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
n-butyl acetate	LOW (BCF = 14)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)
2,4-pentanedione	LOW (LogKOW = 0.4)

Mobility in soil

Ingredient	Mobility
n-butyl acetate	LOW (KOC = 20.86)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)
2,4-pentanedione	HIGH (KOC = 1)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same Product / Packaging disposal product, then puncture containers, to prevent re-use, and bury at an authorised landfill,

Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Version No: **4.8** Page **13** of **15** Issue Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed
 apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

•3Y

Land transport (ADG)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1263		
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)		
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack	A3 A72 A192 366 220 L 355 60 L Y344 10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)

Version No: 4.8 Page 14 of 15 Issue Date: 26/07/2020 Print Date: 26/07/2020

Altex E~Line 379 Part A (MCR)

IMDG Class Transport hazard class(es) IMDG Subrisk Not Applicable Packing group Not Applicable **Environmental hazard FMS Number** F-E, S-E 163 223 367 955 Special precautions for user Special provisions Limited Quantities

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

N-BUTYL ACETATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

2,4-PENTANEDIONE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (n-butyl acetate; propylene glycol monomethyl ether acetate, alpha-isomer; xylenes; 2,4-pentanedione)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	26/07/2020
Initial Date	28/08/2017

SDS Version Summary

Version	Issue Date	Sections Updated
3.8.1.1.1	26/07/2020	Classification, Environmental, Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

Version No: **4.8** Page **15** of **15** Issue Date: **26/07/2020**

Altex E~Line 379 Part A (MCR)

Print Date: 26/07/2020

 ${\tt PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorlTe, from Chemwatch.

Altex E~Line 379 Part B

Resene Paints (Australia) Limited

Version No: 4.8

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **12/05/2020** Print Date: **12/05/2020** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex E~Line 379 Part B
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Part B of a tmulti-component industrial coating

Details of the supplier of the safety data sheet

Registered company name	Resene Paints (Australia) Limited	
Address	64 Link Drive Queensland 4207 Australia	
Telephone	+61 7 55126600	
Fax	+61 7 55126697	
Website	www.resene.com.au	
Email	Not Available	

Emergency telephone number

Association / Organisation	AUSTRALIAN POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification ^[1]	Respiratory Sensitizer Category 1, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Skin Sensitizer Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER	
Hazard statement(s)	
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H317	May cause an allergic skin reaction.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P261	Avoid breathing mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.

Version No: 4.8 Page 2 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex E~Line 379 Part B

P280	P280 Wear protective gloves/protective clothing/eye protection/face protection.	
P285	In case of inadequate ventilation wear respiratory protection.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P321	Specific treatment (see advice on this label).	
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.	
P363	Wash contaminated clothing before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
28182-81-2	>=90	hexamethylene diisocyanate polymer
822-06-0	<=0.3	hexamethylene diisocyanate

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Nash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.			
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.			
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as Perform CPR if necessary. Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be adr as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially syn A physician should be consulted. 			
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. 			

Indication of any immediate medical attention and special treatment needed

For sub-chronic and chronic exposures to isocyanates:

- ▶ This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- ▶ Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- ▶ Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- ▶ Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- ▶ Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.

Version No: 4.8 Page 3 of 12 Issue Date: 12/05/2020

Altex E~Line 379 Part B

Print Date: 12/05/2020

- ▶ Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- ▶ There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk
- Water spray or fog may cause frothing and should be used in large quantities.
- ► Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture			
Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result		
Advice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 		
Fire/Explosion Hazard	 Combustible. Moderate fire hazard when exposed to heat or flame. When heated to high temperatures decomposes rapidly generating vapour which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapour. Burns with acrid black smoke and poisonous fumes. Due to reaction with water producing CO2-gas, a hazardous build-up of pressure could result if contaminated containers are re-sealed. Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide. Combustion products include: carbon dioxide (CO2) isocyanates hydrogen cyanide and minor amounts of nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit corrosive fumes. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur 		

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

Not Applicable

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	3.4
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur. For isocyanate spills of less than 40 litres (2 m2): Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible. Notify supervision and others as necessary.

Version No: 4.8 Page 4 of 12 Issue Date: 12/05/2020

Altex E~Line 379 Part B

Print Date: 12/05/2020

- ▶ Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots)
- ► Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- ▶ Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- ▶ Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- ▶ Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100% Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8% 100%

Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- ▶ Open all containers with care.

Moderate hazard.

- ▶ Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- ▶ Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ▶ No smoking, naked lights or ignition sources.
- ► Increase ventilation.
- ▶ Stop leak if safe to do so.
- ▶ Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ► DO NOT enter confined spaces until atmosphere has been checked

Avoid smoking, naked lights or ignition sources. Safe handling

- ▶ Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.

Version No: 4.8 Page 5 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex E~Line 379 Part B

Observe manufacturer's storage and handling recommendations contained within this SDS.

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

▶ DO NOT allow clothing wet with material to stay in contact with skin

Consider storage under inert gas

for commercial quantities of isocyanates:

Use good occupational work practice.

- Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken
- Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- Fransfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- ▶ Store in original containers.
- ► Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- ▶ Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.

Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials

- Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- Do NOT reseal container if contamination is expected
- Open all containers with care
- Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions
 - ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- For the relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

Storage incompatibility

- Х Must not be stored together
- 0 May be stored together with specific preventions
 - May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hexamethylene diisocyanate polymer	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	hexamethylene diisocyanate	Hexamethylene diisocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

Version No: 4.8 Page 6 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex E~Line 379 Part B

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
hexamethylene diisocyanate polymer	Hexamethylene diisocyanate polymer		7.8 mg/m3	86 mg/m3	510 mg/m3
hexamethylene diisocyanate	Hexamethylene diisocyanate; (1,6-Diisocyanatohexane)		0.018 ppm	0.2 ppm	3 ppm
Ingredient	Original IDLH Revised I		IIDLH		
hexamethylene diisocyanate polymer	Not Available	Not Available			
hexamethylene diisocyanate	Not Available	Not Available			

Exposure controls

- ▶ All processes in which isocyanates are used should be enclosed wherever possible.
- Fotal enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- ▶ Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- ▶ Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- F Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3-2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation.
- Fig. The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active	1-2.5 m/s (200-500
generation into zone of rapid air motion)	f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Appropriate engineering

controls

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Hands/feet protection

Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be

Version No: **4.8** Page **7** of **12** Issue Date: **12/05/2020**

Altex E~Line 379 Part B

washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- ▶ Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Body protection

See Other protection below

Other protection

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- ► P.V.C. apron
- ► Barrier cream.
- Skin cleansing cream.
- ► Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Altex E~Line 379 Part B

Material	СРІ
SARANEX-23	A

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Full face respirator with supplied air.

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.

Print Date: 12/05/2020

Version No: 4.8

Altex E~Line 379 Part B

Page 8 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

> $\ \ \ \ \ \$ Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate. \\ \\

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

	· '		
Appearance	Moisture sensitive. Clear Colour with Slight Odour		
Physical state	Liquid	Relative density (Water = 1)	1.16
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>1	VOC g/L	0

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
Skin Contact	Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
Еуе	This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

Version No: **4.8** Page **9** of **12** Issue Date: **12/05/2020**

Altex E~Line 379 Part B

Print Date: 12/05/2020

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

Chronic

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic
 animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without
 apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50-2 g/kg bw). The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- ▶ then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

Animal testing shows that polymeric MDI can damage the nasal cavities and lungs, causing inflammation.and increased cell growth. This product contains a polymer with a functional group considered to be of high concern. Isothiocyanates may cause hypersensitivity of the skin and airways.

CONTAINS free organic isocyanate. Mixing and application requires special precautions and use of personal protective gear [APMF]

Altex E~Line 379 Part B	TOXICITY	IRRITATION	
	Not Available	Not Available	
	TOXICITY	IRRITATION	
hexamethylene diisocyanate	dermal (rat) LD50: >2000 mg/kg ^[1]	Skin (rabbit): 500 mg - moderate	
polymer	Inhalation (rat) LC50: 4.625 mg/l/1he ^[2]		
	Oral (rat) LD50: approximately2000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: =570 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
hexamethylene diisocyanate	Inhalation (rat) LC50: 0.06 mg/l/4h ^[2]	Skin: adverse effect observed (corrosive) ^[1]	
	Oral (rat) LD50: =710 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

HEXAMETHYLENE DIISOCYANATE POLYMER

* Bayer SDS ** Ardex SDS

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

HEXAMETHYLENE DIISOCYANATE

For 1,6-hexamethylene diisocyanate (HDI):

Exposures to HDI are often associated with exposures to its prepolymers, one of which is widely used as a hardener in automobile and airplane paints. Both the prepolymers and the native substance may cause asthma. HDI is corrosive to the skin and eye, and will sensitise the skin and airway. Most of the toxicity is in the upper airway (nose), although animal testing did not show that HDI caused cancer. In animal tests, HDI did not cause mutations, genetic damage, reduce fertility, or cause developmental toxicity.

Aromatic and aliphatic diisocyanates may cause airway toxicity and skin sensitization. Monomers and prepolymers exhibit similar respiratory effect. Of the several members of diisocyanates tested on experimental animals by inhalation and oral exposure, some caused cancer while others produced a harmless outcome. This group of compounds has therefore been classified as cancer-causing.

Altex E~Line 379 Part B & HEXAMETHYLENE DIISOCYANATE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Version No: 4.8 Page 10 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex E~Line 379 Part B

Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins.

Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. The following information refers to contact allergens as a group and may not be specific to this product.

Altex E~Line 379 Part B & **HEXAMETHYLENE DIISOCYANATE POLYMER & HEXAMETHYLENE** DIISOCYANATE

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination,

anxiety, depression and paranoia.

HEXAMETHYLENE DIISOCYANATE POLYMER & HEXAMETHYLENE DIISOCYANATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

💢 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Altex E~Line 379 Part B	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available Not Available		Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	8.9mg/L	2
hexamethylene diisocyanate polymer	EC50	48	Crustacea 127mg/L		2
polymer	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	EC0	24	Crustacea	>=1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	22mg/L	1
hexamethylene diisocyanate	EC50	72	Algae or other aquatic plants	>77.4mg/L	2
	NOEC	72	Algae or other aquatic plants	4.9mg/L	2
Legend:		IUCLID Toxicity Data 2. Europe ECHA Registe Aquatic Toxicity Data (Estimated) 4. US EPA, E	ũ .	,	
	' '	Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data			

for polyisocyanates:

Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms.

For Isocvanate Monomers

Environmental Fate: Isocyanates, (di- and polyfunctional isocyanates), are commonly used to make various polymers, such as polyurethanes. Polyurethanes find significant application in the manufacture of rigid and flexible foams. They are also used in the production of adhesives, elastomers, and coatings.

Atmospheric Fate: These substances are not expected to be removed from the air via precipitation washout or dry deposition.

Terrestrial Fate: These substances are expected to sorb strongly to soil. Migration to groundwater and surface waters is not expected to occur.

Aquatic Fate: Breakdown by water, (hydrolysis), is the primary fate mechanism for the majority of commercial isocyanate monomers, however; the low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates. These substances strongly sorb to suspended particulates in water. In the absence of hydrolysis, sorption to solids, (e.g., sludge and sediments), will be the primary mechanism of removal. Biological breakdown is minimal for most compounds and evaporation is negligible. Evaporation from surface water is expected to take years. In wastewater treatment this process is not expected to be significant. Isocyanates will react with water producing carbon dioxide and forming a solid mass, which is insoluble.

Biodegradation: Breakdown of these substances in oxygenated and low oxygen environments is not expected to occur. Most of the substances take several months to degrade. Degradation of the hydrolysis products will occur at varying rates.

Ecotoxicity: These substances are not expected to accumulate/biomagnify in the environment. These substances are toxic if inhaled. These substances are harmful to aquatic organisms and may cause long-term adverse effects in the aquatic environment

DO NOT discharge into sewer or waterways

Persistence and degradability

ingredient Persistence: water/soil Persistence: Air		Ingredient	Persistence: Water/Soil	Persistence: Air
---	--	------------	-------------------------	------------------

Version No: 4.8 Page 11 of 12 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex E~Line 379 Part B

hexamethylene diisocyanate polymer	HIGH	HIGH
hexamethylene diisocyanate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
hexamethylene diisocyanate polymer	LOW (LogKOW = 7.5795)
hexamethylene diisocyanate	LOW (LogKOW = 3.1956)

Mobility in soil

Ingredient	Mobility
hexamethylene diisocyanate polymer	LOW (KOC = 18560000)
hexamethylene diisocyanate	LOW (KOC = 5864)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► DO NOT recycle spilled material.
- Consult State Land Waste Management Authority for disposal.
- Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- ▶ DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- Puncture containers to prevent re-use.
- Bury or incinerate residues at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

HEXAMETHYLENE DIISOCYANATE POLYMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 6}$

HEXAMETHYLENE DIISOCYANATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Version No: **4.8** Page **12** of **12** Issue Date: **12/05/2020**

Altex E~Line 379 Part B

Print Date: 12/05/2020

Australia Inventory of Chemical Substances (AICS)

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

National Inventory Status

National Inventory	Status	
Australia - AICS	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (hexamethylene diisocyanate)	
China - IECSC Yes		
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (hexamethylene diisocyanate polymer)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	ico - INSQ No (hexamethylene diisocyanate polymer)	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	12/05/2020
Initial Date	28/08/2017

SDS Version Summary

Version	Issue Date	Sections Updated
3.8.1.1.1	12/05/2020	Ingredients, Physical Properties

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible\ Concentration-Time\ Weighted\ Average}$

 ${\sf PC-STEL} : {\sf Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.