Altex Chembar 900 (MCR)

Resene Paints (Australia) Limited

Version No: 3.6

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **12/05/2020** Print Date: **12/05/2020** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex Chembar 900 (MCR)
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses in	dustrial coating
-----------------------------	------------------

Details of the supplier of the safety data sheet

Registered company name	Resene Paints (Australia) Limited	
Address	ress 64 Link Drive Queensland 4207 Australia	
Telephone	+61 7 55126600	
Fax	+61 7 55126697	
Website	www.resene.com.au	
Email	Not Available	

Emergency telephone number

Association / Organisation	AUSTRALIAN POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification [1]	Flammable Liquid Category 3, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Reproductive Toxicity Category 1A, Specific target organ toxicity - repeated exposure Category 2, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Lactation Effects, Skin Sensitizer Category 1, Carcinogenicity Category 2, Chronic Aquatic Hazard Category 4
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

Hazard statement(s)		
H226	Flammable liquid and vapour.	
H319	Causes serious eye irritation.	
H336	May cause drowsiness or dizziness.	
H360	May damage fertility or the unborn child.	
H373	May cause damage to organs through prolonged or repeated exposure.	
H302	Harmful if swallowed.	
H315	Causes skin irritation.	

Version No: 3.6 Page 2 of 16 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

H362	May cause harm to breast-fed children.	
H317	May cause an allergic skin reaction.	
H351	Suspected of causing cancer.	
H413	May cause long lasting harmful effects to aquatic life.	

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P260	Do not breathe mist/vapours/spray.
P263	Avoid contact during pregnancy/while nursing.
P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	P308+P313 IF exposed or concerned: Get medical advice/attention.	
P321	Specific treatment (see advice on this label).	
P362	Take off contaminated clothing and wash before reuse.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
108-65-6	1-10	propylene glycol monomethyl ether acetate, alpha-isomer
85535-85-9	1-10	C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%
1330-20-7	20-30	xylene

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- ▶ Wash out immediately with fresh running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper

Version No: 3.6 Page 3 of 16 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

and lower lids Seek medical attention without delay: if pain persists or recurs seek medical attention ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ► Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. For thermal burns: ▶ Decontaminate area around burn. ▶ Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. ▶ Use compresses if running water is not available ▶ Cover with sterile non-adhesive bandage or clean cloth. ▶ Do NOT apply butter or ointments; this may cause infection. ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) ▶ Cool the burn by immerse in cold running water for 10-15 minutes. ▶ Use compresses if running water is not available. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. Do NOT break blisters or apply butter or ointments; this may cause infection. Skin Contact ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): ► Lay the person flat. ▶ Elevate feet about 12 inches. ► Elevate burn area above heart level, if possible. ▶ Cover the person with coat or blanket. ► Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Fortest burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings Do not soak burn in water or apply ointments or butter; this may cause infection. ▶ To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up Check pulse and breathing to monitor for shock until emergency help arrives. If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. ► If swallowed do **NOT** induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

- ► Observe the patient carefully
- ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Ingestion Seek medical advice
 - Avoid giving milk or oils.
 - Avoid giving alcohol
 - If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.

For acute or short term repeated exposures to xylene:

- F Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Figure (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Comments Determinant Sampling Time Index Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ Dry chemical powder.
- ► BCF (where regulations permit).

Version No: 3.6 Page 4 of 16 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

- Carbon dioxide.
- ► Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture		
Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 	
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) carbon monoxide (CO) hydrogen chloride phosgene sulfur oxides (SOx) metal oxides other pyrolysis products typical of burning organic material. 	

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

•3Y

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	Environmental hazard - contain spillage. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling ▶ Containers, even those that have been emptied, may contain explosive vapours. Version No: 3.6 Page 5 of 16 Issue Date: 12/05/2020

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec).
- Avoid splash filling.
- ► Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
- ▶ Earth all lines and equipment
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ► DO NOT allow clothing wet with material to stay in contact with skin

▶ Store in original containers in approved flammable liquid storage area.

- ▶ Store away from incompatible materials in a cool, dry, well-ventilated area.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents

Conditions for safe storage, including any incompatibilities

Other information

Suitable container

- Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Barium sulfate (barytes)

For alkyl aromatics

- reacts violently with dimethyl sulfoxide, sodium acetylide, finely divided carbon, aluminium, magnesium, zirconium, and possibly other active metals, especially at elevated temperatures
- ▶ is incompatible with potassium, phosphorus (ignites when primed with nitrate-calcium silicide)
- Xylenes: ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ► Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.

Storage incompatibility

Version No: 3.6 Page 6 of 16 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

 $\ensuremath{\blacktriangleright}$ Microwave conditions give improved yields of the oxidation products. Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

Х Must not be stored together

0 - May be stored together with specific preventions

- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available
xylene	Xylenes	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available
C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%	Not Available	Not Available
xylene	900 ppm	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, sp plating acid fumes, pickling (released at low velocity into zone of active generation)	oray drift, 0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (activinto zone of rapid air motion)	ve generation 1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of Version No: **3.6** Page **7** of **16** Issue Date: **12/05/2020**

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Safety glasses with side shields.

- _____
 - Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons.

The performance, based on breakthrough times ,of:

- Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butyl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- Fair breakthrough time < 20 min
- Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

- **DO NOT** use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
- DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

Body protection

Hands/feet protection

See Other protection below

Version No: **3.6** Page **8** of **16** Issue Date: **12/05/2020**

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

- ▶ Overalls
- ► PVC Apron.
- ► PVC protective suit may be required if exposure severe.
- ▶ Eyewash unit.
- ► Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- ▶ For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

Other protection

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Altex Chembar 900 (MCR)

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/BUTYL	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x FS	_	Δir-line**	_

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

	• •		
Appearance	coloured viscous liquid with hydrocarbon odour		
Physical state	Liquid	Relative density (Water = 1)	1.47
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	481
pH (as supplied)	Not Available	Decomposition temperature	Not Available

Version No: 3.6 Page 9 of 16 Issue Date: 12/05/2020

Alters Character 200 (MCD)

Print Date: 12/05/2020

Altex Chembar 900 (MCR)

Melting point / freezing point Not Available Viscosity (cSt) 1088.435 (°C) Initial boiling point and boiling 139 Molecular weight (g/mol) Not Available range (°C) Flash point (°C) 29 Taste Not Available 0.7 BuAC = 1 **Evaporation rate Explosive properties** Not Available Flammability Flammable Oxidising properties Not Available Surface Tension (dyn/cm or Upper Explosive Limit (%) 7.6 Not Available mN/m) Lower Explosive Limit (%) 11 Volatile Component (%vol) 56 Not Available Vapour pressure (kPa) 0.5 Gas group Solubility in water Immiscible pH as a solution (1%) Not Available Vapour density (Air = 1) 3.8 VOC q/L 410

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation hazard is increased at higher temperatures.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhaled

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

When humans were exposed to 100-200 parts per million ethyl benzene for 8 hours, about 45-65% is retained in the body. Only traces of unchanged ethyl benzene is breathed out following termination of inhalation exposure. Most of the retained dose is excreted in the urine after metabolism. In animals which died from exposure, there was intense congestion of the lungs and generalized congestion of organs; changes in sympathetic neurotransmitter levels in the brain were also seen.

Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers.

Xylene is a central nervous system depressant

Ingestion

Skin Contact

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion of soluble barium compounds may result in ulceration of the mucous membranes of the gastrointestinal tract, tightness in the muscles of the face and neck, gastroenteritis, vomiting, diarrhoea, muscular tremors and paralysis, anxiety, weakness, laboured breathing, cardiac irregularity due to contractions of smooth striated and cardiac muscles (often violent and painful), slow irregular pulse, hypertension, convulsions and respiratory failure.

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

This material can cause inflammation of the skin on contact in some persons.

The material may accentuate any pre-existing dermatitis condition

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Testing in humans suggests that liquid ethyl benzene is absorbed at a greater rate than aniline, benzene, nitrobenzene, carbon disulfide and styrene.

Animal testing showed repeated application of the undiluted product to the abdomen resulted in redness, swelling and superficial tissue death (necrosis). The material did appear to be absorbed through the skin in sufficient quantity to produce outward signs of toxicity.

Version No: 3.6 Page 10 of 16 Issue Date: 12/05/2020

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

Eye

Chronic

This material can cause eye irritation and damage in some persons.

Two drops of ethylbenzene into the conjunctival sac produced only slight irritation of the conjunctival membrane, but no injury to the cornea.

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Ample evidence exists that this material directly causes reduced fertility

Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Industrial workers exposed to 14 parts per million ethylbenzene experienced headaches, irritability and rapid fatigue. Some workers exposed for over 7 years showed nervous system disturbances, while other workers had enlarged livers.

Prolonged and repeated exposure may be harmful to the central nervous system (CNS), upper respiratory tract, and/or may cause liver disorders. It may also cause drying, scaling and blistering of the skin. Animal testing showed that chronic exposure to ethylbenzene may increase the incidence of tumours of the kidney, lung and liver.

Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Barium compounds may cause high blood pressure, airway irritation and damage the liver, spleen and bone marrow. Prolonged exposure may cause a lung inflammation and scarring.

	TOXICITY	IRRITATION	
Altex Chembar 900 (MCR)	Not Available	Not Available	
	TOXICITY	IRRITATION	
propylene glycol monomethyl	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
ether acetate, alpha-isomer	Inhalation (rat) LC50: 6510.0635325 mg/l/6h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 5155 mg/kg ^[1]		
C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%	TOXICITY	IRRITATION	
	Oral (rat) LD50: 2000-4000 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
		Skin: adverse effect observed (irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE	
xylene	Oral (rat) LD50: 3523-8700 mg/kg ^[2]	Eye (rabbit): 87 mg mild	
		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):500 mg/24h moderate	
		Skin: adverse effect observed (irritating) ^[1]	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Altex Chembar 900 (MCR)

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely

distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics

Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield: the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

Ethylbenzene is readily absorbed when inhaled, swallowed or in contact with the skin. It is distributed throughout the body, and passed out through urine. It may irritate the skin, eyes and may cause hearing loss if exposed to high doses. Long Term exposure may cause damage to the kidney, liver and lungs, including a tendency to cancer formation, according to animal testing. There is no research on its effect on sex organs and unborn babies

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu

For propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers

Version No: **3.6** Page **11** of **16** Issue Date: **12/05/2020**

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body.

As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene glycol ethers are unlikely to possess genetic toxicity.

Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical.

Reproductive effector in rats

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

XYLENE

58%

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Altex Chembar 900 (MCR) & C14-17 ALKANES, CHLORINATED-, CHLORINATED PARAFFIN 52.

C12, 60% Chlorinated paraffin is classified by IARC as possibly causing cancer in humans. In experimental animals, oral exposure to its C12, 59% variant plus corn oil produced tumour and early infant death.

High molecular weight liquid chloroparaffins are considered to be practically non-harmful. Special consideration should be given to solid grades of the material (eg Cereclor 70) because of relatively high levels of carbon tetrachloride remaining as a residual reactant. Vapours are readily absorbed through intact skin, requiring additional precautions in handling.

Lifetime studies have been carried out with two grades of chlorinated paraffins. A short-chain grade with 58% chlorine caused tumours in rats and mice. Male mice exposed to long-chain grades with 40% chlorine showed an excess of tumours at one site. It has been shown that the mechanisms by which short-term paraffins cause tumours are specific to rodents and may not have relevance to human health. Furthermore, chlorinated paraffins have been shown to non-genotoxic.

The Regulatory regime in various countries differs with respected to chlorinated paraffins.

In the USA, the short-chain (C12), 58% chlorine product has been classified and labelled as a carcinogen.

In Germany the MAK Commission has classified most chlorinated paraffins as Category IIIB (suspect carcinogens). They are not however included in the list of substances (TRGS 905) required to be labelled.

All EU Member States are required to classify short chain chlorinated paraffins as Category 3 carcinogens.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification
Pote available to make classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
Altex Chembar 900 (MCR)	Not Available	Not Available	Not Available		Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	SPECIES		SOURCE
	LC50	96	Fish	1	100mg/L	1
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	48	Crustacea	Crustacea		2
ctrici dectate, alpita-isomei	EC50	72	Algae or other aquatic plants		>1-mg/L	2
	NOEC	96	Algae or other aquatic plants	i	>=1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VA	LUE	SOURCE
	LC50	96	Fish	>5-	-mg/L	2
C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%	EC50	48	Crustacea	0.0	06mg/L	2
chiorinateu paranin 52, 56 %	EC50	96	Algae or other aquatic plants	Algae or other aquatic plants >3.2		2
	NOEC	480	Fish	0.0	01-0.6mg/L	2
xylene	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
	LC50	96	Fish	Fish		2
	EC50	48	Crustacea	Crustacea 1.8		2
	EC50	72	Algae or other aquatic plants	Algae or other aquatic plants 3.2mg/L		2
	NOEC	73	Algae or other aquatic plants		0.44mg/L	2

Version No: 3.6 Page 12 of 16 Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

May cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane; (BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

For Inorganic Sulfate:

Environmental Fate - Sulfates can produce a laxative effect at concentrations of 1000 - 1200 mg/liter, but no increase in diarrhea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed

Atmospheric Fate: Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) which contribute to the removal of sulfate from the atmosphere.

Terrestrial Fate: Soil - In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Plants - Sodium sulfate is not very toxic to terrestrial plants however; sulfates can be taken up by plants and be incorporated into the parenchyma of the plant. Some plants (e.g. corn and Kochia Scoparia) are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants. Jack pine are the most sensitive plant species.

Aquatic Fate: Sulfate in water can also be reduced by sulfate bacteria (Thiobacilli) which use them as a source of energy. In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur. Sodium sulfate is not reactive in aqueous solution at room temperature. Sodium sulfate will completely dissolve, ionize and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited with the majority of sulfates participating in the sulfur cycle in which natural and industrial sodium sulfates are not distinguishable.

Ecotoxicity: Significant bioconcentration or bioaccumulation is not expected. Algae are the most sensitive to sodium sulfate and toxicity occurs in bacteria from 2500mg/L. Sulfates are not acutely toxic to fish or invertebrates. Daphnia magna water fleas and fathead minnow appear to be the least sensitive species. Activated sludge showed a very low sensitivity to sodium sulfate. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. No data were found for long term toxicity. For Barium and its Compounds:

Environmental Fate: Barium is a highly reactive metal occurring naturally only in a combined state, primarily as inorganic complexes. Conditions such as pH, oxidation-reduction potential, cation exchange capacity, and the presence of sulfate, carbonate, and the presence of metal oxides will affect the partitioning of barium and its compounds in the environment. The element is released to environmental by both natural processes and man-made sources. Most barium released to the environment from industrial sources is in forms that do not become widely dispersed.

Atmospheric Fate: In the atmosphere, barium is likely to be present in particulate form. Barium compounds will be removed from the atmosphere via wet/dry deposition. The substance may change to different forms of barium in the air.

Terrestrial Fate: Soil - Barium will leach from geological formations to groundwater and will adsorb to soil. Barium is not very mobile in most soil systems and will form soluble complexes with fulvic/humic acids. Transportation rates of barium in soil are dependent on the characteristics of soil material. In soils with high positive ion exchange capacity, (e.g., fine textured mineral soils or soils with high organic matter content), barium mobility will be limited by adsorption. Soils high in calcium carbonate leave barium carbonate residues which limit mobility. Barium produces barium sulfate residues in the presence of sulfates. Barium is more mobile, and is more likely to be leached, from soils in the presence of chloride and under acidic conditions. Barium binds with fatty acids, (e.g., in acidic landfill leachate), and will be much more mobile in soils containing fatty acids. Plants - Barium is not expected to concentrate in plants, relative to amounts found in soils; however, there are some plants, (beans, forage plants, Brazil nuts, and mushrooms), which accumulate barium. Aquatic Fate: Barium will adsorb to sediment/suspended particulate matter. Precipitation of barium sulfate salts is accelerated where rivers enter the ocean. Sedimentation of

Version No: **3.6** Page **13** of **16** Issue Date: **12/05/2020**Print Date: **12/05/2020**Print Date: **12/05/2020**

Altex Chembar 900 (MCR)

plants by a factor of 400-4,000 times the level present in the water. The substance may concentrate in marine animals, plankton, and brown algae.

suspended solids removes a large portion of the barium content from surface waters. Barium in sediments is found largely in the form of barium sulfate, (barite).

Ecotoxicity: Barium concentration will increase as it moves up the food chain in both land and aquatic species. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt, (i.e. barium sulfate/barium sulfite). The uptake of barium by fish and marine organisms is also an important removal mechanism. Barium may concentrate in marine

For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

For Ethylbenzene: Log Kow: 3.15; Log Koc: 1.98-3.04; Koc: 164; Log Kom: 1.73-3.23; Vapor Pressure: 1270 Pa (1.27 kPa); Half-life (hr) air: 0.24-85.6; Half-life (hr) Surface Water: 5-240; Half-life (hr) Soil: 72-240; Henry's Pa m3 /mol: 748-887; Henry's atm m3 /mol: 8.44; Water Solubility: 169 mg/l @ 25 C.

Atmospheric Fate: Ethylbenzene partitions primarily to the air from water and soil, where it is broken down. Ethylbenzene is volatile and will rapidly evaporate. Light breakdown is the primary route of removal in the environment, with an estimated half-life of 1 day.

Terrestrial Fate: This substance is inherently biodegradable in the soil, in the presence of oxygen and not rapidly biodegradable in low oxygen conditions. Ethylbenzene is expected to be moderately adsorbed to soil.

Aquatic Fate: Ethylbenzene is considered inherently biodegradable and removal from water occurs primarily by evaporation but, in the summer, biological breakdown plays a key role in the removal process. This substance is removed biologically in oxygenated waters and removal is slow in low oxygen waters.

Ecotoxicity: Ethylbenzene is not expected to bioaccumulate. The substance ranges from slightly to moderately toxic to aquatic organisms. The substance is slightly toxic to fathead minnow, rainbow trout, and Atlantic silverside. Ethylbenzene is slightly toxic to Daphnia magna and Ceriodaphia dubia water fleas and can inhibit growth in green algae and Skeletonema costatum diatoms.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)

Bioaccumulative potential

Ingredient	Bioaccumulation	
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)	
xylene	MEDIUM (BCF = 740)	

Mobility in soil

Ingredient	Mobility
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- ► Reduction ► Reuse
- ▶ Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be

- appropriate.DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ► Where in doubt contact the responsible authority.

Version No: **3.6** Page **14** of **16** Issue Date: **12/05/2020**

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADG)

UN number	1263			
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)			
Transport hazard class(es)	Class 3 Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L			

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)			
	ICAO/IATA Class	3		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	3L		
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions		A3 A72 A192	
	Cargo Only Packing Ir	nstructions	366	
	Cargo Only Maximum	Qty / Pack	220 L	
	Passenger and Cargo	Packing Instructions	355	
	Passenger and Cargo	Maximum Qty / Pack	60 L	
	Passenger and Cargo	Limited Quantity Packing Instructions	Y344	
	Passenger and Cargo	Limited Maximum Qty / Pack	10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263			
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)			
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L			

Version No: 3.6 Page **15** of **16** Issue Date: 12/05/2020 Print Date: 12/05/2020

Altex Chembar 900 (MCR)

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

C14-17 ALKANES, CHLORINATED-, CHLORINATED PARAFFIN 52, 58% IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Chemical Footprint Project - Chemicals of High Concern List

XYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (propylene glycol monomethyl ether acetate, alpha-isomer; C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%; xylene)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	12/05/2020
Initial Date	25/08/2017

SDS Version Summary

Version	Issue Date	Sections Updated
2.6.1.1.1	12/05/2020	Chronic Health, Classification, Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

Version No: **3.6** Page **16** of **16** Issue Date: **12/05/2020**

Altex Chembar 900 (MCR)

Print Date: 12/05/2020

PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.