Altex Zinkex 100 #### **ALTEX COATINGS LTD** Version No: 4.14 Safety Data Sheet according to HSNO Regulations Chemwatch Hazard Alert Code: 2 Issue Date: 27/05/2020 Print Date: 27/05/2020 S.GHS.NZL.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Altex Zinkex 100 | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | industrial coating | |--------------------------|--------------------| | | madoma oodiing | # Details of the supplier of the safety data sheet | Registered company name | ALTEX COATINGS LTD | |-------------------------|--| | Address | 91-111 Oropi Road, Tauranga, New Zealand Other New Zealand | | Telephone | +64 7 5411221 | | Fax | +64 7 5411310 | | Website | Not Available | | Email | neil.debenham@altexcoatings.co.nz | #### **Emergency telephone number** | Association / Organisation | NZ POISONS CENTRE | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-------------------|------------------------------| | Emergency telephone numbers | 0800 764 766 | +64 800 700 112 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 # **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Determined by Chemwatch using GHS/HSNO criteria | 3.1C, 6.1E (dermal), 6.1E (respiratory), 6.3B, 6.7B, 6.8B, 6.8C, 6.9B, 9.1A | | |---|---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | Classification ^[1] | Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Reproductive Toxicity Category 2, Lactation Effects, Acute Toxicity (Dermal) Category 5, Chronic Aquatic Hazard Category 1, Carcinogenicity Category 2, Skin Corrosion/Irritation Category 3 | | # Label elements Hazard pictogram(s) SIGNAL WORD # Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--| | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H335 | May cause respiratory irritation. | | H361 | Suspected of damaging fertility or the unborn child. | Version No: 4.14 Page 2 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 # Altex Zinkex 100 | H362 | May cause harm to breast-fed children. | |------|---| | H313 | May be harmful in contact with skin. | | H410 | Very toxic to aquatic life with long lasting effects. | | H351 | Suspected of causing cancer. | | H316 | Causes mild skin irritation. | # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | P260 | Do not breathe mist/vapours/spray. | | P263 | Avoid contact during pregnancy and while nursing. | | P271 | Use in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | # Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | |----------------|--|--| | | · | | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P391 | Collect spillage. | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** # Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |------------|-----------|--| | 7440-66-6 | 70-80 | zinc powder | | 64742-95-6 | 10-20 | naphtha petroleum, light aromatic solvent | | 85535-85-9 | 1-10 | C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58% | # **SECTION 4 FIRST AID MEASURES** | Description of first aid measures | | | |-----------------------------------|---|--| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. | | Version No: 4.14 Page 3 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 Altex Zinkex 100 Perform CPR if necessary ▶ Transport to hospital, or doctor, without delay. ► Immediately give a glass of water. Ingestion First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. #### Indication of any immediate medical attention and special treatment needed For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent - Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be
complicated. - Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. BP America Product Safety & Toxicology Department for naphthalene intoxication: Naphthalene requires hepatic and microsomal activation prior to the production of toxic effects. Liver microsomes catalyse the initial synthesis of the reactive 1,2-epoxide intermediate which is subsequently oxidised to naphthalene dihydrodiol and alpha-naphthol. The 2-naphthoquinones are thought to produce haemolysis, the 1,2-naphthoquinones are thought to be responsible for producing cataracts in rabbits, and the glutathione-adducts of naphthalene-1,2-oxide are probably responsible for pulmonary toxicity. Suggested treatment regime: - ▶ Induce emesis and/or perform gastric lavage with large amounts of warm water where oral poisoning is suspected. - Instill a saline cathartic such as magnesium or sodium sulfate in water (15 to 30g). - ▶ Demulcents such as milk, egg white, gelatin, or other protein solutions may be useful after the stomach is emptied but oils should be avoided because they promote absorption. - If eyes/skin contaminated, flush with warm water followed by the application of a bland ointment. - ▶ Severe anaemia, due to haemolysis, may require small repeated blood transfusions, preferably with red cells from a non-sensitive individual. - Where intravascular haemolysis, with haemoglobinuria occurs, protect the kidneys by promoting a brisk flow of dilute urine with, for example, an osmotic diuretic such as mannitol. It may be useful to alkalinise the urine with small amounts of sodium bicarbonate but many researchers doubt whether this prevents blockage of the renal tubules. - ▶ Use supportive measures in the case of acute renal failure. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed. Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure. - Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever) - Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months. - Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects. - The general approach to treatment is recognition of the disease, supportive care and prevention of exposure. - ▶ Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema. [Ellenhorn and Barceloux: Medical Toxicology] - Absorption of zinc compounds occurs in the small intestine. - The metal is heavily protein bound. - Elimination results primarily from faecal excretion. - The usual measures for decontamination (Ipecac Syrup, layage, charcoal or cathartics) may be administered, although patients usually have sufficient vomiting not to require - ► CaNa2EDTA has been used successfully to normalise zinc levels and is the agent of choice. [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** ▶ DO NOT use halogenated fire extinguishing agents. Metal dust fires need to be smothered with sand, inert dry powders. # DO NOT USE WATER, CO2 or FOAM - ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire. - Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas. - Chemical reaction with CO2 may produce flammable and explosive methane - ▶ If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out. #### Special hazards arising from the substrate or mixture Fire Incompatibility - ▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear full protective clothing plus breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. # Fire Fighting Consider evacuation (or protect in place) DO NOT use water on fires. **CAUTION**: If only water available, use flooding quantities of water or withdraw personnel. - ▶ DO NOT allow water to enter containers - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with flooding quantities of water from a protected location until well after fire is out. Version No: 4.14 Page 4 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 If safe to do so, remove undamaged containers from path of fire. If fire gets out of control withdraw personnel and warn against entry. • Equipment should be thoroughly decontaminated after use. ▶ Fight fire from a protected position or use unmanned hose holders or monitor nozzles ▶ Withdraw immediately in case of rising sound from venting safety devices or discolouration of tanks. ALWAYS stav away from tank ends. ▶ DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. ▶ DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: ▶ May burn when metal is finely divided and energy input is high. ► May react explosively with water. ▶ May be ignited by friction, heat, sparks or flame. May REIGNITE after fire is extinguished. Will burn with intense heat. Fire/Explosion Hazard Note: ▶ Metal dust fires are slow moving but intense and difficult to extinguish. ► Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. ▶ Gases generated in fire may be poisonous, corrosive or irritating. ▶ Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids ▶ Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures liquids would be incapable of burning. other pyrolysis products typical of burning organic material. Combustion products include: carbon dioxide (CO2) See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Material from spill may be contaminated with water resulting in generation of gas which subsequently may pressure closed containers. Hold spill material in vented containers only and plan for prompt disposal Eliminate all ignition sources. Cover with DRY earth, sand or other non-combustible material. Then cover with plastic sheet to minimise spreading and to prevent exposure to rain or other sources of water. Use clean, non-sparking tools to collect absorbed material and place into loosely-covered metal or plastic containers ready for disposal. Wear gloves and safety glasses as appropriate. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. | |--| | ▶ Alert Fire Brigade and tell them location and nature of hazard. | | Wear full protective clothing and breathing apparatus. Prevent, by
any means available, spillage from entering drains or water courses. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. DO NOT USE WATER OR NEUTRALISING AGENTS INDISCRIMINATELY ON LARGE SPILLS. Absorb or cover spill with sand, earth, inert material or vermiculite and cover with white mineral oil. Collect recoverable product into labelled containers for recycling. Collect residues and seal in labelled drums for disposal. Wash spill area with detergent and water. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs as a result of the above actions, advise emergency services. | | | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling - ► Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. Use in a well-ventilated area. # Safe handling - Avoid contact with moisture. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use. - Avoid physical damage to containers. Version No: 4.14 Page 5 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 - Always wash hands with soap and water after handling. - Work clothes should be laundered separately and before re-use - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - DO NOT allow clothing wet with material to stay in contact with skin # KEEP DRY! Packages must be protected from water ingress. #### FOR MINOR QUANTITIES: - ▶ Store in an indoor fireproof cabinet or in a room of noncombustible construction and - ▶ provide adequate portable fire-extinguishers in or near the storage area. #### FOR PACKAGE STORAGE: - ▶ Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. #### Other information - ▶ Keep containers securely sealed. - ▶ Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the packages are securely closed are not opened for any purpose while in the area where they are stored; (c) adequate precautions are taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely. - ▶ Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods. - Automatic fire-sprinklers MUST NOT be installed in room or space. - ▶ The room or space must be located at least five metres from the boundaries of the premises and from other buildings unless separated by a wall with a fire resistance of at least four hours. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities #### ▶ CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release Heavy gauge metal packages / Heavy gauge metal drums For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C): #### Suitable container Storage incompatibility - ▶ Removable head packaging and - cans with friction closures may be used. Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material. #### For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products. - Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - ▶ Aromatics can react exothermically with bases and with diazo compounds. - ▶ WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. - Fig. The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid reaction with borohydrides or cyanoborohydrides - ▶ Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid. - Reacts slowly with water. - CAUTION contamination with moisture will liberate explosive hydrogen gas, causing pressure build up in sealed containers. - ▶ Reacts violently with caustic soda, other alkalies generating heat, highly flammable hydrogen gas. - If alkali is dry, heat generated may ignite hydrogen if alkali is in solution may cause violent foaming - Segregate from alcohol, water. Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but: - can react exothermically with oxidising acids to form noxious gases. - ▶ catalyse polymerisation and other reactions, particularly when finely divided - react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds - Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air. - Safe handling is possible in relatively low concentrations of oxygen in an inert gas. - ▶ Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended. - The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric. Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others. Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 - Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products. - ▶ Elemental metals may react with azo/diazo compounds to form explosive products. - ▶ Some elemental metals form explosive products with halogenated hydrocarbons. - Must not be stored together - 0 May be stored together with specific preventions - May be stored together # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-------------|---|----------|---------------|---------------|---------------| | New Zealand Workplace
Exposure Standards (WES) | zinc powder | Particulates not otherwise classified respirable dust | 3 mg/m3 | Not Available | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | zinc powder | Particulates not otherwise
classified | 10 mg/m3 | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|---|----------------|----------------|-----------------| | zinc powder | Zinc | 6 mg/m3 | 21
mg/m3 | 120
mg/m3 | | naphtha petroleum, light aromatic solvent | Naphtha (coal tar); includes solvent naphtha, petroleum (64742-88-7), naphtha (petroleum) light aliphatic, rubber solvent (64742-89-8), heaevy catalytic cracked (64741-54-4), light straight run (64741-46-4), heavy aliphatic solvent (64742-96-7), high flash aromatic and aromatic solvent naphtha (64742-95-6) | 1,200
mg/m3 | 6,700
mg/m3 | 40,000
mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | zinc powder | Not Available | Not Available | | naphtha petroleum, light aromatic solvent | Not Available | Not Available | | C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58% | Not Available | Not Available | #### OCCUPATIONAL EXPOSURE BANDING Appropriate engineering controls | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |---|---|----------------------------------| | naphtha petroleum, light aromatic solvent | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and to adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which correspond range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** Metal dusts must be collected at the source of generation as they are potentially explosive. - Avoid ignition sources. - Good housekeeping practices must be maintained. - ▶ Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions. - ▶ Do not use compressed air to remove settled materials from floors, beams or equipment - ▶ Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. - ▶ Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations. - ▶ Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. - Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium. - Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible. - Wet scrubbers are preferable to dry dust collectors. - Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors. - ▶ Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially - Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. - Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | e of Contaminant: | Air Speed: | |-------------------|------------| |-------------------|------------| Version No: 4.14 Page 7 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection Eve and face protection #### Safety glasses with side shields - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection #### See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for
specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended ▶ Protective gloves eg. Leather gloves or gloves with Leather facing #### **Body protection** Hands/feet protection # See Other protection below # Other protection #### Overalls. #### Eyewash unit. Barrier cream. # Skin cleansing cream. Version No: 4.14 # Page 8 of 16 Altex Zinkex 100 Issue Date: **27/05/2020**Print Date: **27/05/2020** - ► Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static - ▶ For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Altex Zinkex 100 | Material | СРІ | |----------|-----| | NITRILE | С | | TEFLON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE:** As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | - | A-AUS / Class 1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ► Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | viscous grey liquid | | | |--|---------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 2.75 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 465 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 469.091 | | Initial boiling point and boiling range (°C) | 148 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 41 | Taste | Not Available | | Evaporation rate | 0.7 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.0 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.6 | Volatile Component (%vol) | 19 | | Vapour pressure (kPa) | 1.3 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 4 | VOC g/L | 523 | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--------------------|--| | Chemical stability | Unstable in the presence of incompatible materials | Version No: 4.14 Page 9 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 | | May heat spontaneously Identify and remove sources of ignition and heating. Incompatible material, especially oxidisers, and/or other sources of oxygen may produce unstable product(s). Avoid sources of water contamination (e.g. rain water, moisture, high humidity). Avoid contact with oxygenated solvents/ reagents such as alcohols. | |------------------------------------|--| | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Not normally a hazard due to non-volatile nature of product On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness Inhalation of naphthalene vapour is linked with headache, loss of appetite, nausea, damage to the eyes and kidneys. According to animal testing, long term exposure may cause excessive weakness and increased salivation, weight loss, difficulty breathing, collapse, and evidence of damage to the skin, liver and lungs. #### Inhaled The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhoea, excessive urination and prostration may also occur. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. # Ingestion The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. Ingestion of naphthalene and related
compounds may produce abdominal cramps with nausea, vomiting, diarrhoea, headache, profuse sweating, listlessness, confusion, and in severe poisonings, coma with or without convulsions. Irritation of the bladder may also occur, producing urgency, painful urination, and the passage of brown or black urine with or without albumin or casts. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Workers sensitised to naphthalene and related compounds show an inflammation of the skin with scaling and reddening. Some individuals show an allergic reaction. Open cuts, abraded or irritated skin should not be exposed to this material # **Skin Contact** Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives. The material may accentuate any pre-existing dermatitis condition Skin contact with the material may be harmful; systemic effects may result following absorption. There is some evidence to suggest that the material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. # Eve There is some evidence to suggest that this material can cause eye irritation and damage in some persons. Long term exposure to naphthalene has produced clouding of the lens (cataracts) in workers. # Chronic There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Animal testing indicates that inhalation of naphthalene may increase the incidence of respiratory tumours and may aggravate chronic inflammation. Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. | Altex Zinkex 100 | TOXICITY Not Available | IRRITATION Not Available | |------------------|---|--| | | TOXICITY | IRRITATION | | zinc powder | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Inhalation (rat) LC50: >1.79 mg/l4 h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | Version No: 4.14 Page 10 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 | | Oral (rat) LD50: >2000 mg/kg ^[1] | | | |--|--|--|--| | | TOXICITY | IRRITATION | | | naphtha petroleum, light | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | aromatic solvent | Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2] | Skin: adverse effect observed (irritating) ^[1] | | | | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | C14-17 alkanes, chlorinated-, | Oral (rat) LD50: 2000-4000 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | chlorinated paraffin 52, 58% | | Skin: adverse effect observed (irritating) ^[1] | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute to specified data extracted from RTECS - Register of Toxic Effect of chemical specified data. | | | | Altex Zinkex 100 | support genotoxicity as one mechanism for the observed increase in car exposure mixture and the potential interactions between exposures in the a role. While it is clear that exposure to some agents in the rubber-manu cytogenetic studies continue to raise concerns about cancer risks. The rubber-manufacturing industry has used and still uses a wide variet carbon black, aromatic amines, PAH, N-nitrosamines, mineral oils, other monomers from synthetic rubber like 1,3-butadiene, acetonitrile, styrene to relate the observed cancer hazards in the rubber-manufacturing industriance. | tional exposures in the rubber-manufacturing industry. Occupational noma, and cancers of the urinary bladder, lung, and stomach. exposures in the rubber-manufacturing industry and cancers of the employed in the rubber-manufacturing industry provide strong evidence to neer risks. However, due to the complexity and changing nature of the ne rubber-manufacturing industry, other mechanisms are also likely to play ufacturing industry has been reduced over time, the results of recent yof substances that belong to many different chemical categories, e.g. r volatile organic compounds from curing fumes, trace amounts of e, vinyl chloride, ethylene oxide, etc For this reason, it has been difficult stry to exposure to specific chemicals. | | | ZINC POWDER | Inhalation (human) TCLo: 124 mg/m3/50min. Skin (human):0.3mg/3Day | rsInt. mild | | | NAPHTHA PETROLEUM,
LIGHT AROMATIC SOLVENT | For C9 aromatics (typically trimethylbenzenes – TMBs) Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively. Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin. Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutation-causing ability. No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing. Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic
to the mother. * [Devoe] . | | | | Altex Zinkex 100 & NAPHTHA
PETROLEUM, LIGHT
AROMATIC SOLVENT | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine. Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In | | | | | 59% variant plus corn oil produced tumour and early infant death. | , oral oxposure to 18 012, | | Altex Zinkex 100 & C14-17 ALKANES, CHLORINATED-, **CHLORINATED PARAFFIN 52,** 58% High molecular weight liquid chloroparaffins are considered to be practically non-harmful. Special consideration should be given to solid grades of the material (eg Cereclor 70) because of relatively high levels of carbon tetrachloride remaining as a residual reactant. Vapours are readily absorbed through intact skin, requiring additional precautions in handling. Lifetime studies have been carried out with two grades of chlorinated paraffins. A short-chain grade with 58% chlorine caused tumours in rats and mice. Male mice exposed to long-chain grades with 40% chlorine showed an excess of tumours at one site. It has been shown that the mechanisms by which short-term paraffins cause tumours are specific to rodents and may not have relevance to human health. Furthermore, chlorinated paraffins have been shown to non-genotoxic. Version No: 4.14 Page 11 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 Altex Zinkex 100 The Regulatory regime in various countries differs with respected to chlorinated paraffins. In the USA, the short-chain (C12), 58% chlorine product has been classified and labelled as a carcinogen. In Germany the MAK Commission has classified most chlorinated paraffins as Category IIIB (suspect carcinogens). They are not however included in the list of substances (TRGS 905) required to be labelled. All EU Member States are required to classify short chain chlorinated paraffins as Category 3 carcinogens. | Acute Toxicity | ~ | Carcinogenicity | ~ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | × | Legend: ★ - Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Altex Zinkex 100 | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---|------------------|--------------------|---|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.001-0.58mg/L | 2 | | | EC50 | 48 | Crustacea | 0.001-0.014mg/L | 2 | | zinc powder | EC50 | 72 | Algae or other aquatic plants | 0.106mg/L | 4 | | | BCF | 360 | Algae or other aquatic plants | 9mg/L | 4 | | | NOEC | 72 | Algae or other aquatic plants | 0.00006537mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 4.1mg/L | 2 | | naphtha petroleum, light
aromatic solvent | EC50 | 48 | Crustacea | 3.2mg/L | 2 | | aromatic solvent | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | | LC50 | 96 | Fish | >5-mg/L | 2 | | C14-17 alkanes, chlorinated-,
chlorinated paraffin 52, 58% | EC50 | 48 | Crustacea | 0.006mg/L | 2 | | cniorinated paramin 52, 58% | EC50 | 96 | Algae or other aquatic plants | >3.2mg/L | 2 | | | NOEC | 480 | Fish | 0.001-0.6mg/L | 2 | | Legend: | V3.12 (QSAR) | , | HA Registered Substances - Ecotoxicological Info
US EPA, Ecotox database - Aquatic Toxicity Data | , , | | Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - reducing of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - ▶ adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16; Half-life (hr) H2O surface water: 0.24 -672; Half-life (hr) H2O ground: 336-1344; Half-life (hr) soil: 168-672; Henry's Pa m3 /mol: 385 -627; Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days). Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene. Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4- Version No: 4.14 Page 12 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For Metal Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends
on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrocene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For petroleum distillates: Environmental fate: When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant. As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10-C25 range, which are degraded readily; - (2) isoalkanes; - (3) alkenes: - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics; - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > -4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13-C15 isoalkanes, C12 alkenes, C12-C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal
and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality Version No: **4.14** Page **13** of **16** Issue Date: **27/05/2020**Print Date: **27/05/2020**Print Date: **27/05/2020** #### Altex Zinkex 100 For C9 aromatics (typically trimethylbenzene - TMBs) Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative. Environmental Fate: In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions. Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4-trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN 25550-14-5)). These three substances exceed 60% biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured. Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high. Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative. **Ecotoxicity** Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations. The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value. For nabhthalene: Environmental Fate: Naphthalene may be reach surface water and soil through transportation in water or being carried by air. Most airborne naphthalene is in a vapour form and hence deposition is expected to be slow. A minimal amount of naphthalene emitted to the air is transported to other environmental components mostly by dry deposition. Naphthalene in surface water may volatililize into the atmosphere, depending on environmental condiditons. It remains in solution in water, with only small amounts associated with suspended material and benthic sediments. While naphthalene is readily volatilized from aerated soils, it adheres to soils with a high organic content. Adsorption to aquifer material reduces transportation of naphthalene through groundwater, and the presence of nonionic organic compounds such as tetrachloroethene may enhance sorption to materials that contain low carbon content. Bioconcentration of naphthalene is moderate in aquatic organisms. It is readily metabolized by fish, and invertebrates that are placed in pollutant free water rapidly eliminate any traces of the pollutant. While bioaccumulation in the food chain is unlikely, exposure of cows and chickens to naphthalene could lead to naphthalene being present in milk and eggs. While the data on the transport and partitioning of methylnaphthalenes in the environment is limited, the characteristics of these chemicals are similar to naphthalene, so they are expected to behave in a similar manner to naphthalene in the environment, and produce the same effects on aquatic organisms. Biodegradation of naphthalene occurs relatively quickly in aquatic systems. Methylnaphthalenes are biodegraded under aerobic conditions after adaptation. Degradation rates are highest in water constantly polluted with petroleum. Naphthalene biodegradation rates are higher in sediment than in the water column above it. Methylnaphthalenes biodegrades more slowly. Reported half-lives in sediments were 46 weeks for 1-methylnaphthalene and ranged from 14 to 50 weeks for 2-methylnaphthalene. In soils, the potential for biodegradation is an important factor for biological remediation of soil. Studies on biodegradation of PAHs suggest that adsorption to the organic matter significantly reduces the bioavailability for microorganisms, and thus the biodegradability, of PAHs, including naphthalene. Biodegradation is accomplished through the action of aerobic microorganisms and is reduced in anaerobic soil conditions. Naphthalene biodegrades to carbon dioxide in aerobic soils, with salicylate as an intermediate product. Abiotic degradation of naphthalene seldom occurs in soils. As with naphthalene, 1-Methylnaphthalene is easily volatilised from aerated soil, and the biodegradation half-life averages between 1.7 and 2.2 days. Ecotoxicity: Acute toxicity data on naphthalene for several fish species (freshwater and marine), show 96h LC50 values range from 1.8 to 7.8 mg/L. Comparable results were obtained with other vertebrates (amphibians). From chronic toxicity tests, a precise NOEL is not clearly determined. A NOEC of 0.12 mg/L was observed in a 40 days test on juvenile pink salmon, but 50% mortality at 0.11 mg/L was calculated for trout fry exposed during hatching. Several data are also available for invertebrates, showing 48h EC50 values ranging from 2.1 to 24 mg/L. While chronic data on freshwater invertebrates and algae are questionable, a 50% photosynthesis reduction was observed at 2.8 mg/L in 4 hours experiments. QSAR prediction models give results consistent with experimental short-term data on fish daphnia and algae. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. ## Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse Version No: 4.14 Page 14 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### Altex Zinkex 100 Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this
type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 # **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility. Burning the hazardous substance must happen under controlled conditions with no person or place exposed to - (1) a blast overpressure of more than 9 kPa; or - (2) an unsafe level of heat radiation. The disposed hazardous substance must not come into contact with class 1 or 5 substances. #### **SECTION 14 TRANSPORT INFORMATION** # Labels Required **Marine Pollutant** **HAZCHEM** •3Y # Land transport (UN) | UN number | 1263 | |------------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | Packing group | III | | Environmental hazard | Environmentally hazardous | | Special precautions for user | Special provisions 163; 223; 367 Limited quantity 5 L | # Air transport (ICAO-IATA / DGR) | 7.11 transport (10/10 1/tr/1/ 201 | - | | | |-----------------------------------|---|----------------------|-------------| | UN number | 1263 | | | | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | | | ICAO/IATA Class | 3 | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | ERG Code | 3L | | | Packing group | III | | | | Environmental hazard | Environmentally hazardo | ous | | | | Special provisions | | A3 A72 A192 | | Special precautions for user | Cargo Only Packing Instructions | | 366 | | | Cargo Only Maximum | Qty / Pack | 220 L | | | Passenger and Cargo | Packing Instructions | 355 | | | | | | Version No: 4.14 Page 15 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### **Altex Zinkex 100** | Passenger and Cargo Maximum Qty / Pack | 60 L | |---|------| | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | # Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | |------------------------------|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | Packing group | III | | | Environmental hazard | Marine Pollutant | | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|--| | HSR002669 | Surface Coatings and Colourants (Flammable, Toxic [6.7]) Group Standard 2017 | #### ZINC POWDER IS FOUND ON THE FOLLOWING REGULATORY LISTS International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) # C14-17 ALKANES, CHLORINATED-, CHLORINATED PARAFFIN 52, 58% IS FOUND ON THE FOLLOWING REGULATORY LISTS Chemical Footprint Project - Chemicals of High Concern List New Zealand Inventory of Chemicals (NZIoC) ## **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity beyond which controls apply for closed containers | Quantity beyond which controls apply when use occurring in open containers | |--------------|--|--| | 3.1C | 500 L in containers greater than 5 L
1500 L in containers up to and including 5 L | 250 L
250 L | # **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |----------------------------|--------------| | 9.1A, 9.2A, 9.3A, and 9.4A | Any quantity | Refer Group Standards for further information # **Tracking Requirements** Not Applicable # **National Inventory Status** | National Inventory | Status | | |--------------------|---|--| | Australia - AICS | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | da - NDSL No (zinc powder; naphtha petroleum, light aromatic solvent; C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%) | | Version No: 4.14 Page 16 of 16 Issue Date: 27/05/2020 Print Date: 27/05/2020 #### **Altex Zinkex 100** | China - IECSC | Yes | | |-------------------------------|---|--| | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | No (zinc powder; C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%) | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 27/05/2020 | |---------------|------------| | Initial Date | 29/11/2017 | #### **SDS Version Summary** | Version | Issue Date | Sections Updated | |------------|------------|-----------------------------| | 3.14.1.1.1 | 27/05/2020 | Classification, Ingredients | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour
Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorlTe, from Chemwatch.