Carboguard 2929 Part A #### **ALTEX COATINGS LTD** Version No: **4.8**Safety Data Sheet according to HSNO Regulations Chemwatch Hazard Alert Code: 3 Issue Date: **16/12/2019**Print Date: **17/12/2019**S.GHS.NZL.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carboguard 2929 Part A | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Part A of a two pack isocyanate free coating | |--------------------------|--| | | | #### Details of the supplier of the safety data sheet | Registered company name | ALTEX COATINGS LTD | | |-------------------------|--|--| | Address | 01-111 Oropi Road, Tauranga, New Zealand Other New Zealand | | | Telephone | +64 7 5411221 | | | Fax | +64 7 5411310 | | | Website | Not Available | | | Email | neil.debenham@altexcoatings.co.nz | | #### **Emergency telephone number** | Association / Organisation | NZ POISONS CENTRE | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-------------------|------------------------------| | Emergency telephone numbers | 0800 764 766 | +64 800 700 112 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Classification ^[1] | Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Serious Eye Damage Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Skin Corrosion/Irritation Category 2, Reproductive Toxicity Category 2, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3 | | |---|---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | Determined by Chemwatch using GHS/HSNO criteria | 3.1C, 6.1E (respiratory), 6.3A, 8.3A, 6.5B (contact), 6.8B, 6.9B, 9.1C, 9.1D | | # Label elements Hazard pictogram(s) SIGNAL WORD DANGE # Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|---| | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. (Not specified) (Dermal, Inhalation) | | H318 | Causes serious eye damage. | | H335 | May cause respiratory irritation. | Version No: 4.8 Page 2 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 # Carboguard 2929 Part A | H315 | Causes skin irritation. | |------|--| | H361 | Suspected of damaging fertility or the unborn child. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | P260 | Do not breathe mist/vapours/spray. | | P271 | Use in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P321 | Specific treatment (see advice on this label). | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|---| | 123-86-4 | 1-10 | n-butyl acetate | | 64742-95-6 | 1-10 | naphtha petroleum, light aromatic solvent | | 78-83-1 | 1-10 | isobutanol | | 1330-20-7 | 1-10 | xylene | | 100-41-4 | 1-10 | ethylbenzene | | 108-65-6 | 1-10 | propylene glycol monomethyl ether acetate, alpha-isomer | | 763-69-9 | 1-10 | ethyl-3-ethoxypropionate | | Not Available | <=1 | UV Absorber | # **SECTION 4 FIRST AID MEASURES** **Eye Contact** # Description of first aid measures If this product comes in contact with the eyes: ▶ Immediately hold eyelids apart and flush the eye continuously with running water. and lower lids. ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper ► Transport to hospital or doctor without delay. Version No: 4.8 Issue Date: 16/12/2019 Page 3 of 17 Print Date: 17/12/2019 #### Carboguard 2929 Part A | | ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a
person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short term repeated exposures to xylene: - ▶ Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - ▶ Pulmonary absorption is rapid with about 60-65% retained at rest. - ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax - Figure Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift #### **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** - ▶ Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. ### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters ▶ Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraving water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Fire/Explosion Hazard Fire Fighting - ▶ Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - ► On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) Version No: 4.8 Page 4 of 17 Issue Date: 16/12/2019 #### Carboguard 2929 Part A Print Date: 17/12/2019 other pyrolysis products typical of burning organic material. # SECTION 6 ACCIDENTAL RELEASE MEASURES #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 ### atorial fo | Methods and material for conta | ainment and cleaning up | |--------------------------------|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** Other information # Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ Electrostatic discharge may be generated during pumping this may result in fire. - ► Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - · Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. Safe handling Avoid generation of static electricity. - ► DO NOT use plastic buckets - ► Earth all lines and equipment. - ▶ Use spark-free tools when handling. - ▶ Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin #### ▶ Store in original containers in approved flammable liquid storage area. - ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. #### No smoking, naked lights, heat or ignition sources. - adequate security must be provided so that unauthorised personnel do not have access. - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable
fire extinguishers dry chemical, foam or carbon dioxide) and Version No: 4.8 Page 5 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 Carboguard 2929 Part A flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents #### Conditions for safe storage, including any incompatibilities Suitable container - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic #### n-Butyl acetate: - reacts with water on standing to form acetic acid and n-butyl alcohol - reacts violently with strong oxidisers and potassium tert-butoxide - is incompatible with caustics, strong acids and nitrates - ▶ dissolves rubber, many plastics, resins and some coatings #### Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - attack some plastics, rubber and coatings - may generate electrostatic charges on flow or agitation due to low conductivity. - ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. #### For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - ▶ Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products. - Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 #### Propylene glycol monomethyl ether acetate: - ▶ may polymerise unless properly inhibited due to peroxide formation - ▶ should be isolated from UV light, high temperatures, free radical initiators - ▶ may react with strong oxidisers to produce fire and/ or explosion - reacts violently with with sodium peroxide, uranium fluoride - ▶ is incompatible with sulfuric acid, nitric acid, caustics, aliphatic amines, isocyanates, boranes Storage incompatibility - Must not be stored together - May be stored together with specific preventions - May be stored together ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-----------------|------------------------------|---------------------|---------------------|---------------|---------------| | New Zealand Workplace
Exposure Standards (WES) | n-butyl acetate | n-Butyl acetate | 150 ppm / 713 mg/m3 | 950 mg/m3 / 200 ppm | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | isobutanol | Isobutyl alcohol | 50 ppm / 152 mg/m3 | Not Available | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | xylene | Dimethylbenzene (see Xylene) | 50 ppm / 217 mg/m3 | Not Available | Not Available | Not Available | Version No: 4.8 Page 6 of 17 Issue Date: 16/12/2019 Carboguard 2929 Part A Print Date: 17/12/2019 | New Zealand Workplace
Exposure Standards (WES) | ethylbenzene | Ethyl benzene | 100 ppm / 434 mg/m3 | 543 mg/m3 / 125 ppm | Not Available | Not Available | |---|--------------|---------------|---------------------|---------------------|---------------|---------------| |---|--------------|---------------|---------------------|---------------------|---------------|---------------| #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|--|---------------|---------------|---------------| | n-butyl acetate | Butyl acetate, n- | Not Available | Not Available | Not Available | | isobutanol | Isobutyl alcohol | 150 ppm | 1,300 ppm | 8000 ppm | | xylene | Xylenes | Not Available | Not Available | Not Available | | ethylbenzene | Ethyl benzene | Not Available | Not Available | Not Available | | propylene glycol monomethyl ether acetate, alpha-isomer | Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate) | Not Available | Not Available | Not Available | | ethyl-3-ethoxypropionate | Propionic acid, 3-ethoxy-, ethyl ester; (Ethyl-3-ethoxypropionate) | 1.6 ppm | 18 ppm | 110 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | n-butyl acetate | 1,700 ppm | Not Available | | naphtha petroleum, light aromatic solvent | Not Available | Not Available | | isobutanol | 1,600 ppm | Not Available | | xylene | 900 ppm | Not Available | | ethylbenzene | 800 ppm | Not Available | | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available | | ethyl-3-ethoxypropionate | Not Available | Not Available | #### OCCUPATIONAL EXPOSURE BANDING | Ingredient | Occupational Exposure Band Rating Occupational Exposure Band Limit | | | |---|--|-----------|--| | naphtha petroleum, light aromatic solvent | Е | ≤ 0.1 ppm | | | ethyl-3-ethoxypropionate | E ≤ 0.1 ppm | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure
ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Version No: 4.8 Page 7 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 Carboguard 2929 Part A #### Personal protection Eye and face protection - ▶ Safety glasses with side shields. - Chemical goggles. - ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ### Skin protection Hands/feet protection #### See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161,10,1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. # **Body protection** #### See Other protection below #### Overalls. - ► PVC Apron. PVC protective suit may be required if exposure severe. - ▶ Evewash unit. - Ensure there is ready access to a safety shower #### Other protection - ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. # Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Carboguard 2929 Part A #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter: the nature of protection varies with Type of filter. Version No: 4.8 Page 8 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 #### Carboguard 2929 Part A | M aterial | СРІ | |------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | IYPALON | С | | AT+NEOPR+NITRILE | С | | ATURAL RUBBER | С | | ATURAL+NEOPRENE | С | | EOPRENE | С | | EOPRENE/NATURAL | С | | ITRILE | С | | TRILE+PVC | С | | = | С | | E/EVAL/PE | С | | VA | С | | /C | С | | VDC/PE/PVDC | С | | EFLON | С | | TON | С | | ITON/BUTYL | С | ^{*} CPI - Chemwatch Performance Index NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may
dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | A-AUS / Class 1 | - | A-PAPR-AUS /
Class 1 | | up to 25 x ES | Air-line* | A-2 | A-PAPR-2 | | up to 50 x ES | - | A-3 | - | | 50+ x ES | - | Air-line** | - | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ► Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Coloured with Characteristic Odour | | | |--|------------------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.37 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 401 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 565.693 | | Initial boiling point and boiling range (°C) | 139 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 35 | Taste | Not Available | | Evaporation rate | 0.7 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 8.8 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.5 | Volatile Component (%vol) | 36 | | Vapour pressure (kPa) | 0.9 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 4.1 | VOC g/L | 332.61 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion Version No: **4.8** Page **9** of **17** Issue Date: **16/12/2019**Print Date: **17/12/2019** #### Carboguard 2929 Part A Incompatible materials See section 7 Hazardous decomposition products See section 5 #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. The material has **NOT** been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness. Isobutanol appears to be more toxic than n-butyl alcohol. It may result in narcosis and death. Animal testing showed no toxic effects from inhaling PGMEA except at very high concentrations. A concentration of 1000 parts per million (0.1%) caused no effects. #### Inhaled Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant #### Ingestion Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Skin Contact Application of isobutanol to human skin produced slight redness and blood congestion. Animal testing showed repeated application of commercial grade PGMEA to skin caused slight redness and very mild exfoliation. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. # Eve If applied to the eyes, this material causes severe eye damage. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight redness of the conjunctiva and slight injury to the cornea in animal testing. # Chronic Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cancer growths were also more common in those animals exposed to isobutanol. Animal testing shows repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) causes mild liver and kidney damage. The beta-isomer, a minor component, may cause birth defects if PGMEA is inhaled during pregnancy. Otherwise, PGMEA has not been shown to have developmental toxicity. It may damage the foetus but only at levels that are also toxic to the mother. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. | | TOXICITY | IRRITATION | | |------------------------|---|--|--| | Carboguard 2929 Part A | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 3200 mg/kg ^[2] | Eye (human): 300 mg | | | | Inhalation (rat) LC50: 1.802 mg/l4 h ^[1] | Eye (rabbit): 20 mg (open)-SEVERE | | |
n-butyl acetate | Oral (rat) LD50: =10700 mg/kg ^[2] | Eye (rabbit): 20 mg/24h - moderate | | | | | Eye: no adverse effect observed (not irritating) ^[1] | | | | | Skin (rabbit): 500 mg/24h-moderate | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | Version No: **4.8** Page Carboguard 2929 Part A Page 10 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 | | l | | | |--|--|---|--| | naphtha petroleum, light
aromatic solvent | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Inhalation (rat) LC50: >7331.62506 mg/l/8h* ^[2] | Skin: adverse effect observed (irritating) ^[1] | | | | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye (rabbit): 2 20 mg/24h-moderate | | | isobutanol | Inhalation (rat) LC50: 19.2 mg/l/4H ^[2] | Eye (rabbit): 2 mg/24h - SEVERE | | | | Oral (rat) LD50: 2460 mg/kg ^[2] | Skin (rabbit): mg (open)-SEVERE | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | | | Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | | xylene | Oral (rat) LD50: 3523-8700 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | ху.с | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit):500 mg/24h moderate | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | | Own. adverse circu observed (imaling): 2 | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >5000 mg/kg ^[2] | Eye (rabbit): 500 mg - SEVERE | | | ethylbenzene | Inhalation (mouse) LC50: 17.75 mg/l/2H ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (rat) LD50: 3500 mg/kg ^[2] | Skin (rabbit): 15 mg/24h mild | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | nrendene alveel menemethyl | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | propylene glycol monomethyl
ether acetate, alpha-isomer | Inhalation (rat) LC50: 6510.0635325 mg/l/6h ^[2] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (rat) LD50: 5155 mg/kg ^[1] | , <u> </u> | | | | , , | ' | | | | TOXICITY | IRRITATION | | | ethyl-3-ethoxypropionate | Dermal (rabbit) LD50: 4076 mg/kg ^[2] | Eye (rabbit): 500mg/24h - mild | | | omy, o omonypropromite | Inhalation (rat) LC50: 1248.57375 mg/l/4h ^[2] | Skin (rabbit):10 mg/24h open mild | | | | Oral (rat) LD50: ~3200-5000 mg/kg ^[2] | i | | | Legend: | Nalue obtained from Europe ECHA Registered Substance specified data extracted from RTECS - Register of Toxic Eff | es - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise
ect of chemical Substances | | | | specified data officials and first the specified and speci | 50.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | | | Carboguard 2929 Part A | eczema involves a cell-mediated (T lymphocytes) immune n
involve antibody-mediated immune reactions. The significan
distribution of the substance and the opportunities for conta
distributed can be a more important allergen than one with s | oup and may not be specific to this product. zema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, noe of the contact allergen is not simply determined by its sensitisation potential: the ct with it are equally important. A weakly sensitising substance which is widely stronger sensitising potential with which few individuals come into contact. From a duce an allergic test reaction in more than 1% of the persons tested. | | | N-BUTYL ACETATE | 551ester | | | | NAPHTHA PETROLEUM,
LIGHT AROMATIC SOLVENT | For C9 aromatics (typically trimethylbenzenes – TMBs) Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively. Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin. Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing. Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother. * [Devoe]. | | | | XYLENE | Reproductive effector in rats The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in | animal testing. | | | ETHYLBENZENE | Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. Ethylbenzene is readily absorbed when inhaled, swallowed or in contact with the skin. It is distributed throughout the body, and passed out through urine. It may irritate the skin, eyes and may cause hearing loss if exposed to high doses. Long Term exposure may cause damage to the kidney, liver and lungs, including a tendency to cancer formation, according to animal testing. There is no research on its effect on sex organs and unborn babies. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to | | | Version No: 4.8 Page 11 of 17 Issue Date: 16/12/2019 #### Carboguard 2929 Part A Print Date: 17/12/2019 cellular DNA WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. #### PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu #### ETHYL-3-ETHOXYPROPIONATE * Union Carbide ** Endura Manufacturing #### Carboguard 2929 Part A & NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT & **ISOBUTANOL** Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to
the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. ### Carboquard 2929 Part A & NAPHTHA PETROLEUM LIGHT AROMATIC SOLVENT Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine. Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation. Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils. Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity. For propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body. As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene glycol ethers are unlikely to possess genetic toxicity. Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical. #### N-BUTYL ACETATE & **ISOBUTANOL & XYLENE &** FTHYLBENZENE Carboquard 2929 Part A & ACETATE, ALPHA-ISOMER PROPYLENE GLYCOL MONOMETHYL ETHER The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. #### **N-BUTYL ACETATE & ISOBUTANOL & XYLENE & ETHYLBENZENE & ETHYL-3-ETHOXYPROPIONATE** The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | × | Leaend: ★ - Data either not available or does not fill the criteria for classification. Data available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** Version No: 4.8 Page 12 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 ### Carboguard 2929 Part A | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |-----------------------------|------------------|--|--|---|------------------| | Carboguard 2929 Part A | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 18mg/L | 4 | | | EC50 | 48 | Crustacea | =32mg/L | <u> </u> 1 | | n-butyl acetate | EC50 | 96 | Algae or other aquatic plants | Algae or other aquatic plants 1.675mg/L | | | | EC90 | 72 | Algae or other aquatic plants | 1-540.7mg/L | 2 | | | NOEC | 504 | Crustacea | 23.2mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 4.1mg/L | 2 | | naphtha petroleum, light | EC50 | 48 | Crustacea | 3.2mg/L | 2 | | aromatic solvent | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 1-430mg/L | 2 | | isobutanol | EC50 | 48 | Crustacea | 1-100mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 1-799mg/L | 2 | | | NOEC | 504 | Crustacea | 4mg/L | 4 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 2.6mg/L | 2 | | xylene | EC50 | 48 | Crustacea | 1.8mg/L | 2 | | , , , | EC50 | 72 | Algae or other aquatic plants | 3.2mg/L | 2 | | | NOEC | 73 | Algae or other aquatic plants | 0.44mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.0043mg/L | 4 | | ethylbenzene | EC50 | 48 | Crustacea | 1.184mg/L | 4 | | · | EC50 | 96 | Algae or other aquatic plants | 3.6mg/L | 4 | | | NOEC | 168 | Crustacea | 0.96mg/L | 5 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 100mg/L | 1 | | opylene glycol monomethyl | EC50 | 48 | Crustacea | 373mg/L | 2 | | ether acetate, alpha-isomer | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEC | 96 | Algae or other aquatic plants | >=1-mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 45.3mg/L | 2 | | ethyl-3-ethoxypropionate | EC50 | 48 | Crustacea | >95mg/L | 1 | | , | EC50 | 96 | Algae or other aquatic plants | 5.289mg/L | 3 | | | NOEC | 48 | Crustacea | =9.5mg/L | 1 | | Legend: | V3.12 (QSAR) - | Aquatic Toxicity Data (Estimated) 4. U | IA Registered Substances - Ecotoxicological Informa
S EPA, Ecotox database - Aquatic Toxicity Data 5. E
(Japan) - Bioconcentration Data 8. Vendor Data | | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For
Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble. Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are "readily biodegradable" under aerobic conditions. In soil, biodegradation is rapid for PM and PMA. Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16; Half-life (hr) H2O surface water: 0.24 -672; Half-life (hr) H2O ground: 336-1344; Half-life (hr) soil: 168-672; Henry's Pa m3 /mol: 385 -627; Version No: **4.8** Page **13** of **17** Issue Date: **16/12/2019**Print Date: **17/12/2019** #### Carboguard 2929 Part A Carboguard 2929 Fart A Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days). Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene. Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations. Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes >naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. $log\ Koc: 2.05-3.08;\ Koc: 25.4-204;\ Half-life\ (hr)\ air: 0.24-42;\ Half-life\ (hr)\ H2O\ surface\ water: 24-672;\ Half-life\ (hr)\ H2O\ ground: 336-8640;\ Half-life\ (hr)\ soil: 52-672;\ Henry's\ Pa\ m3\ /mol: 637-879;\ Henry's\ atm\ m3\ /mol - 7.68E-03;\ BOD\ 5\ if\ unstated - 1.4,1%;\ COD\ - 2.56,13\%\ ThOD\ - 3.125:\ BCF: 23;\ log\ BCF: 1.17-2.41.$ Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, and 4-nitro-2,6-dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. For n-Butyl Acetate: Koc: ~200; log Kow: 1.78; Half-life (hr) air: 144; Half-life (hr) H2O surface water: 178 - 27156; Henry's atm: m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7%; COD: 78%; ThOD: 2.207; BCF: 4-14. Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days. Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae. **DO NOT** discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|------------------------------|-----------------------------| | n-butyl acetate | LOW | LOW | | isobutanol | LOW (Half-life = 14.42 days) | LOW (Half-life = 4.15 days) | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | ethylbenzene | HIGH (Half-life = 228 days) | LOW (Half-life = 3.57 days) | | propylene glycol monomethyl ether acetate, alpha-isomer | LOW | LOW | | ethyl-3-ethoxypropionate | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|-----------------------| | n-butyl acetate | LOW (BCF = 14) | | isobutanol | LOW (LogKOW = 0.76) | | xylene | MEDIUM (BCF = 740) | | ethylbenzene | LOW (BCF = 79.43) | | propylene glycol monomethyl ether acetate, alpha-isomer | LOW (LogKOW = 0.56) | | ethyl-3-ethoxypropionate | LOW (LogKOW = 1.0809) | #### Mobility in soil | Ingredient | Mobility | | |------------|----------|--| Version No: 4.8 Page **14** of **17** Issue Date: 16/12/2019 Print Date: 17/12/2019 #### Carboguard 2929 Part A | n-butyl acetate | LOW (KOC = 20.86) | |---|----------------------| | isobutanol | MEDIUM (KOC = 2.048) | | ethylbenzene | LOW (KOC = 517.8) | | propylene glycol monomethyl ether acetate, alpha-isomer | HIGH (KOC = 1.838) | | ethyl-3-ethoxypropionate | LOW (KOC = 10) | #### **SECTION 13 DISPOSAL CONSIDERATIONS**
Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility. Burning the hazardous substance must happen under controlled conditions with no person or place exposed to - (1) a blast overpressure of more than 9 kPa; or - (2) an unsafe level of heat radiation. The disposed hazardous substance must not come into contact with class 1 or 5 substances. #### **SECTION 14 TRANSPORT INFORMATION** # **Labels Required** #### Land transport (UN) | UN number | 1263 | |----------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | Packing group | | | Environmental hazard | Not Applicable | Version No: **4.8** Page **15** of **17** Issue Date: **16/12/2019** Carboguard 2929 Part A Print Date: 17/12/2019 | Special processions for user | Special provisions | 163; 223; 367 | |------------------------------|--------------------|---------------| | Special precautions for user | Limited quantity | 5 L | #### Air transport (ICAO-IATA / DGR) | UN number | 1263 | | | | | |------------------------------|---|--|-------------|--|--| | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | | | | Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable | | | | | | Transport Hazard Glass(cs) | ICAO / IATA Subrisk Not Applicable ERG Code 3L | | | | | | Packing group | III | | | | | | Environmental hazard | Not Applicable | | | | | | | Special provisions | | A3 A72 A192 | | | | | Cargo Only Packing Instructions | | 366 | | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 355 | | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | | | #### Sea transport (IMDG-Code / GGVSee) | | • | | | |------------------------------|--|--|--| | UN number | 1263 | | | | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002662 | Surface Coatings and Colourants (Flammable) Group Standard 2017 | #### N-BUTYL ACETATE IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations # NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Inventory of Chemicals (NZIoC) New Zealand Land Transport Rule; Dangerous Goods 2005 - Schedule 2 Dangerous Goods in Limited Quantities and Consumer Commodities United Nations Recommendations on the Transport of Dangerous Goods Model Regulations #### ISOBUTANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS Version No: **4.8** Page **16** of **17** Issue Date: **16/12/2019**Print Date: **17/12/2019** #### Carboguard 2929 Part A GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances IMO Provisional Categorization of Liquid Substances - List 1: Pure or technically pure products International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations #### XYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Air Transport Association (IATA) Dangerous Goods
Regulations #### ETHYLBENZENE IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations #### PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations ### ETHYL-3-ETHOXYPROPIONATE IS FOUND ON THE FOLLOWING REGULATORY LISTS GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity beyond which controls apply for closed containers | Quantity beyond which controls apply when use occurring in open containers | |--------------|--|--| | 3.1C | 500 L in containers greater than 5 L
1500 L in containers up to and including 5 L | 250 L
250 L | #### Certified Handler Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory | Status | |--------------------|---| | Australia - AICS | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (propylene glycol monomethyl ether acetate, alpha-isomer; naphtha petroleum, light aromatic solvent; xylene; n-butyl acetate; UV Absorber; ethylbenzene; ethyl-3-ethoxypropionate; isobutanol) | | China - IECSC | Yes | Version No: 4.8 Page 17 of 17 Issue Date: 16/12/2019 Print Date: 17/12/2019 # Carboguard 2929 Part A | Europe - EINEC / ELINCS / NLP | Yes | |-------------------------------|---| | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 16/12/2019 | |---------------|------------| | Initial Date | 15/01/2018 | #### **SDS Version Summary** | Version | Issue Date | Sections Updated | |-----------|------------|--| | 3.8.1.1.1 | 16/12/2019 | Classification, Environmental, Ingredients | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average ${\tt PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch. # Carboguard 2929 Part B #### **ALTEX COATINGS LTD** Version No: **4.10**Safety Data Sheet according to HSNO Regulations Chemwatch Hazard Alert Code: 4 Issue Date: 17/12/2019 Print Date: 17/12/2019 S.GHS.NZL.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carboguard 2929 Part B | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Part B of a two pack isocyanate free coating | |--------------------------|---| | | . art 2 or a two paort loody ariato ir oo coating | #### Details of the supplier of the safety data sheet | Registered company name | ALTEX COATINGS LTD | |-------------------------|--| | Address | 91-111 Oropi Road, Tauranga, New Zealand Other New Zealand | | Telephone | +64 7 5411221 | | Fax | +64 7 5411310 | | Website | Not Available | | Email | neil.debenham@altexcoatings.co.nz | #### **Emergency telephone number** | Association / Organisation | NZ POISONS CENTRE | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-------------------|------------------------------| | Emergency telephone numbers | 0800 764 766 | +64 800 700 112 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Classification [1] | Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Serious Eye Damage Category 1 | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 3.1C, 8.3A, 6.9B (narcotic effects) | #### Label elements Hazard pictogram(s) ### Hazard
statement(s) | ······································ | | | |--|------------------------------------|--| | H226 | Flammable liquid and vapour. | | | H336 | May cause drowsiness or dizziness. | | | H318 | Causes serious eye damage. | | #### Precautionary statement(s) Prevention | Tresductionary statement(s) Tresention | | | |--|--|--| | P210 | Geep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | P271 | Use only outdoors or in a well-ventilated area. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | Version No: 4.10 Page 2 of 13 Issue Date: 17/12/2019 Print Date: 17/12/2019 ### Carboguard 2929 Part B P240 Ground and bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. Avoid breathing mist/vapours/spray. P261 #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P310 | nmediately call a POISON CENTER/doctor/physician/first aider. | | | P370+P378 | n case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | #### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | | |-----------|-----------|---------------------------------------|--| | 2530-83-8 | 1-10 | gamma-glycidoxypropyltrimethoxysilane | | | 123-86-4 | 40-50 | n-butyl acetate | | # **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | · | | |--------------|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters: # BASIC TREATMENT - ► Establish a patent airway with suction where necessary. - ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - ▶ Monitor and treat, where necessary, for pulmonary oedema . Version No: **4.10** Page **3** of **13** Issue Date: **17/12/2019** Carboguard 2929 Part B Print Date: 17/12/2019 - ▶ Monitor and treat, where necessary, for shock. - ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - Give activated charcoal. #### ADVANCED TREATMENT ----- - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. #### EMERGENCY DEPARTMENT - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - ► Consult a toxicologist as necessary BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For acute and short term repeated exposures to methanol: - ▶ Toxicity results from accumulation of formaldehyde/formic acid. - Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation. - ▶ Stabilise obtunded patients by giving naloxone, glucose and thiamine - ▶ Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established. - Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 meg/L). - ► Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal. - Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8.Phenytoin may be preferable to diazepam for controlling seizure. [Ellenhorn Barceloux: Medical Toxicology] **BIOLOGICAL EXPOSURE INDEX - BEI** Determinant Index Sampling Time Comment 1. Methanol in urine 15 mg/l End of shift B, NS 2. Formic acid in urine 80 mg/gm creatinine Before the shift at end of workweek B, NS B: Background levels occur in specimens collected from subjects **NOT** exposed. NS: Non-specific determinant - observed following exposure to other materials. # **SECTION 5 FIREFIGHTING MEASURES** # Extinguishing media - ► Alcohol stable foam. - Dry chemical powder. - BCF (where regulations permit). - ▶ Carbon dioxide. - Water spray or fog Large fires only. Fire/Explosion Hazard # Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive - Wear breathing apparatus plus protective gloves. - ▶ Prevent,
by any means available, spillage from entering drains or water course. - Fire Fighting If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. - Use water delivered as a fine spray to cor Avoid spraying water onto liquid pools. - DO NOT approach containers suspected to be hot. - ► Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. #### Liquid and vapour are flammable. - ► Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame. - Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Version No: 4.10 Page 4 of 13 Issue Date: 17/12/2019 Print Date: 17/12/2019 Carboguard 2929 Part B #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | |--------------|--| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** Safe handling Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - ▶ Avoid smoking, naked lights or ignition sources. Avoid generation of static electricity. - - ► DO NOT use plastic buckets ► Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. #### ▶ Store in original containers in approved flammable liquid storage area. ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. ### Other information - F Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ▶ Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents Version No: **4.10** Page **5** of **13** Issue Date: **17/12/2019** Carboguard 2929 Part B Print Date: 17/12/2019 #### Conditions for safe storage, including any incompatibilities Suitable container #### ► Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### n-Butyl acetate: - reacts with water on standing to form acetic acid and n-butyl alcohol - reacts violently with strong oxidisers and potassium tert-butoxide - is incompatible with caustics, strong acids and nitrates - b dissolves rubber, many plastics, resins and some coatings - ► Contact with water liberates highly flammable gases # Epoxides: - are highly reactive with acids, bases, and oxidising and reducing agents. - react, possibly violently, with anhydrous metal chlorides, ammonia, amines and group 1 metals. - ▶ may polymerise in the presence of peroxides or heat polymerisation may be violent - ▶ may react, possibly violently, with water in the presence of acids and other catalysts. - Esters react with acids to liberate heat along with alcohols and acids. - ▶ Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products. - ▶ Heat is also generated by the interaction of esters with caustic solutions. - ► Flammable hydrogen is generated by mixing esters with alkali metals and hydrides. - Esters may be incompatible with aliphatic amines and nitrates. - Avoid strong acids, bases. Storage incompatibility X — Must not be stored together May be stored together with specific preventions May be stored together #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ### Control parameters ### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-----------------|-----------------|---------------------
---------------------|---------------|---------------| | New Zealand Workplace
Exposure Standards (WES) | n-butyl acetate | n-Butyl acetate | 150 ppm / 713 mg/m3 | 950 mg/m3 / 200 ppm | Not Available | Not Available | #### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|--|---------------|---------------|---------------| | gamma-
glycidoxypropyltrimethoxysilane | Glycidoxypropyltrimethoxysilane; (3-(2,3-Epoxypropoxy) propyltrimethoxysilane) | 9.3 mg/m3 | 100 mg/m3 | 230 mg/m3 | | n-butyl acetate | Butyl acetate, n- | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | gamma-
glycidoxypropyltrimethoxysilane | Not Available | Not Available | | n-butyl acetate | 1,700 ppm | Not Available | #### OCCUPATIONAL EXPOSURE BANDING | Ingredient | Occupational Exposure Band Rating Occupational Exposure Band Limit | | | |---|--|-----------|--| | gamma-
glycidoxypropyltrimethoxysilane | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | ### Exposure controls # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically Version No: **4.10** Page **6** of **13** Issue Date: **17/12/2019** #### Carboguard 2929 Part B Print Date: 17/12/2019 "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection Eye and face protection - ► Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below #### For esters Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - · chemical resistance of glove material, - glove thickness and - dexterity # Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' Version No: 4.10 Issue Date: 17/12/2019 Page 7 of 13 Print Date: 17/12/2019 # Carboguard 2929 Part B technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only
be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber #### **Body protection** ### See Other protection below - Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ▶ Evewash unit. - Ensure there is ready access to a safety shower #### Other protection - Fome plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Carboguard 2929 Part B | Material | СРІ | |------------------|-----| | PE/EVAL/PE | A | | PVA | A | | TEFLON | A | | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NATURAL RUBBER | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PVC | С | | VITON/BUTYL | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter: the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | A-AUS / Class 1 | - | A-PAPR-AUS /
Class 1 | | up to 25 x ES | Air-line* | A-2 | A-PAPR-2 | | up to 50 x ES | - | A-3 | - | | 50+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Clear Colour with Characteristic Odour | | | |-------------------------------------|--|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.00 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 370 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 23.750 | Version No: 4.10 Page 8 of 13 Issue Date: 17/12/2019 Print Date: 17/12/2019 # Carboguard 2929 Part B | Initial boiling point and boiling range (°C) | 124 | Molecular weight (g/mol) | Not Available | |--|--------------|----------------------------------|---------------| | Flash point (°C) | 26 | Taste | Not Available | | Evaporation rate | 1.0 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 10.4 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 3 | Volatile Component (%vol) | 47 | | Vapour pressure (kPa) | 1.5 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 4.0 | VOC g/L | 407.09 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicological effect | | |-------------------------------------|--| | | | | | There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. | |---------|---| | | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal | | | models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an | | | occupational setting. | | Inhaled | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of | | | co-ordination, and vertigo. | Prolonged exposure may cause headache, nausea and ultimately loss of consciousness. The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur. # Ingestion There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence Accidental ingestion of the material may be damaging to the health of the individual. # Skin Contact There is strong evidence to suggest that this material, on a single contact with skin, can cause very serious, irreversible damage of organs. The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. # Eye If applied to the eyes, this material causes severe eye damage. #### Chronic Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. | | TOXICITY | IRRITATION | |---|---|-----------------------------------| | Carboguard 2929 Part B | Not Available | Not Available | | | Not Available | Not Available | | | TOXICITY | IRRITATION | |
gamma-
glycidoxypropyltrimethoxysilane | Dermal (rabbit) LD50: 4247.9 mg/kg ^[2] | Not Available | | | Inhalation (rat) LC50: >5.3 mg/l/4H ^[2] | | | | Oral (rat) LD50: 7010 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | n-butyl acetate | Dermal (rabbit) LD50: 3200 mg/kg $^{[2]}$ | Eye (human): 300 mg | | | Inhalation (rat) LC50: 1.802 mg/l4 h ^[1] | Eye (rabbit): 20 mg (open)-SEVERE | Version No: 4.10 Page 9 of 13 Issue Date: 17/12/2019 Print Date: 17/12/2019 Print Date: 17/12/2019 # Carboguard 2929 Part B | Oral (rat) LD50: =10700 mg/kg ^[2] | Eye (rabbit): 20 mg/24h - moderate | |--|--| | | Eye: no adverse effect observed (not irritating) ^[1] | | | Skin (rabbit): 500 mg/24h-moderate | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | Legend 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | GLYCIDOXYPROPYLTRIMETHO | GAMMA-
KYSILANE | due primarily to methanol and silanetriols. | GPTMS is mildly irritating to the skin hown to cause chromosomal damag | nydrolysis and the observed toxicity is expected to be and eyes and is not a known skin sensitiser in e and gene mutations. It is not considered to cause he mother. | |--|--------------------|---|---|--| | N-BUTYL | ACETATE | may produce conjunctivitis. | prolonged or repeated exposure and | mmation. Repeated or prolonged exposure to irritants d may produce on contact skin redness, swelling, the | | Carboguard 2929 Part B & GAMMA-GLYCIDOXYPROPYLTRIMETHOXYSILANE Low molecular weight alkoxysilane can cause irreventower, studies suggest with repeated occupation cancer. Oxiranes (including glycidyl ethers and alkyl oxides toxicology. One such oxirane is ethyloxirane; data proposed for 1,2-butylene oxide (ethyloxirane): In animal testing, ethyloxirane increased the incider tumours were not observed in mice chronically expended in the chronical expenses | | ccupational exposure, methoxysilane
yl oxides, and epoxides) share many
ie; data presented here may be taken
incidence of tumours of the airway
cally exposed via skin. Two structura | may cause damage to the eye and skin as well as common characteristics with respect to animal n as representative. It is in animals exposed via inhalation. However, ally related substances, oxirane (ethylene oxide) and | | | Aguta Taviaity | · · | | Carcinogenicity | × | | Acute Toxicity X | | Carcinogenicity | ^ | | Skin Irritation/Corrosion X Reproductivity X Serious Eye Damage/Irritation V STOT - Single Exposure V Respiratory or Skin sensitisation X STOT - Repeated Exposure X Mutagenicity X Aspiration Hazard X Legend: X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | Carboguard 2929 Part B | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 4.9mg/L | 2 | | gamma- | EC50 | 48 | Crustacea | 473mg/L | 2 | | glycidoxypropyltrimethoxysilane | EC50 | 96 | Algae or other aquatic plants | <1.000mg/L | 3 | | | EC100 | 48 | Crustacea | 1-mg/L | 2 | | | NOEC | 96 | Fish | 1.5mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 18mg/L | 4 | | | EC50 | 48 | Crustacea | =32mg/L | 1 | | n-butyl acetate | EC50 | 96 | Algae or other aquatic plants | 1.675mg/L | 3 | | | EC90 | 72 | Algae or other aquatic plants | 1-540.7mg/L | 2 | | | NOEC | 504 | Crustacea | 23.2mg/L | 2 | | | | | | | | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Alkoxysilanes are highly toxic to algae and moderately toxic to aquatic invertebrates. e.g. the daphnid 48 hour LC50 for dimethyldiethoxysilane is 1.25 mg/l, and the 15-day algal EC50 for a number of alkoxysilanes is approximately 10 mg/l. Alkoxysilanes are used as coupling agents and are designed to hydrolyse in water. Hydrolysis generally produces biodegradable alcohols. Studies indicate that the rates of hydrolysis of alkoxysilanes are related to their steric bulk, but these effects become less important after hydrolysis of the first alkoxy group. for gamma-glycidopropyltrimethoxysilane (GPTMS) Environmental Fate The melting point of GPTMS is < -70C, the boiling point is 290C at 1013 hPa, and the vapor pressure is 0.003 hPa at 20 C. Because GPTMS is hydrolytically unstable, the water solubility was not measured. From photodegradation modeling, the half-life in the atmosphere due to reaction with photochemically-induced OH radicals is estimated to be 5.8 hours. However, the overall half-life may be even shorter, as concurrent hydrolysis will also occur. Version No: **4.10** Page **10** of **13** Issue Date: **17/12/2019**Print Date: **17/12/2019** #### Carboguard 2929 Part B The measured hydrolysis half-life for GPTMS at 25C ranges from 3 minutes to 6.5 hours over the pH range of 5 to 9. At pH 7 and 25C, the half-life of the parent compound is 6.5 hours and the conversion of GPTMS to methanol and 3-glycidoxypropylsilanetriol is expected to reach 99.9% in <2.8 days. The epoxy group slowly reacts (over a period of months) to form diols in water. The Si-C bond will not undergo hydrolysis. The transient silanol groups will condense with other silanols to yield an epoxy-functional silicone resin (oligomer resin). The measured (and calculated) hydrolysis half-lives demonstrate that GPTMS is hydrolytically unstable over a range of environmentally relevant pH and temperature conditions. Ecotoxicity: Fish LC50 (96 h):juvenile rainbow trout (Oncorhynchus mykiss) 237 mg/l (semi-static); carp (Cyprinus carpio) 55 mg/l Daphnia magna EC50 (48 h): 473-710 mg/l Algae EbC50 (72 h): Selenastrum capricornutum 250 mg/l; ErC50 350 mg/l Since GPTMS is subject to hydrolysis, which may occur during preparation of the dosing solutions and/or during testing, the observed toxicity is likely due to the hydrolysis products methanol and silanetriols. Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative. For 1,2-Butylene oxide (Ethyloxirane): log Kow values of 0.68 and 0.86. BAF and BCF : 1 to 17 L./kg. Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids
is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days. Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil. Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days). Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L. For n-Butyl Acetate: Koc: ~200; log Kow: 1.78; Half-life (hr) air: 144; Half-life (hr) H2O surface water: 178 - 27156; Henry's atm: m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7%; COD: 78%; ThOD: 2.207; BCF: 4-14. Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days. Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-------------------------|------------------| | gamma-
glycidoxypropyltrimethoxysilane | нівн | HIGH | | n-butyl acetate | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---|------------------------| | gamma-
glycidoxypropyltrimethoxysilane | LOW (LogKOW = -0.9152) | | n-butyl acetate | LOW (BCF = 14) | # Mobility in soil | Ingredient | Mobility | |---|-------------------| | gamma-
glycidoxypropyltrimethoxysilane | LOW (KOC = 90.22) | | n-butyl acetate | LOW (KOC = 20.86) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods - ► Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. #### Otherwise If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. # Product / Packaging disposal Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Nerarchy of ► Reduction - ► Reuse - ► Recycling Version No: 4.10 Page 11 of 13 Issue Date: 17/12/2019 #### Carboguard 2929 Part B Print Date: 17/12/2019 Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility. Burning the hazardous substance must happen under controlled conditions with no person or place exposed to - (1) a blast overpressure of more than 9 kPa; or - (2) an unsafe level of heat radiation. The disposed hazardous substance must not come into contact with class 1 or 5 substances. #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required | | 3 | |--|---| Marine Pollutant NO **HAZCHEM** •3Y #### Land transport (UN) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 163; 223; 367 Limited quantity 5 L | | | # Air transport (ICAO-IATA / DGR) | All transport (toxo-txta / bott) | | | | | |---|---|---|--|--| | 1263 | | | | | | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | | | | ICAO/IATA Class 3 | | | | | | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code 3L | | | | | | III | | | | | | Not Applicable | | | | | | Special provisions | | A3 A72 A192 | | | | Cargo Only Packing In | structions | 366 | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | | Passenger and Cargo Packing Instructions | | 355 | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | | Paint (including paint, lacthinning or reducing com ICAO/IATA Class ICAO / IATA Subrisk ERG Code III Not Applicable Special provisions Cargo Only Packing In Cargo Only Maximum Passenger and Cargo Passenger and Cargo | Paint (including paint, lacquer, enamel, stain, shellac, varnish, pot thinning or reducing compounds) ICAO/IATA Class ICAO / IATA Subrisk Not Applicable ERG Code III Not Applicable Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack
Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and thinning or reducing compounds) ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L III Not Applicable Special provisions A3 A72 A192 Cargo Only Packing Instructions 366 Cargo Only Maximum Qty / Pack 220 L Passenger and Cargo Packing Instructions 355 Passenger and Cargo Maximum Qty / Pack 60 L | | Version No: **4.10** Page **12** of **13** Issue Date: **17/12/2019** #### Carboguard 2929 Part B Print Date: 17/12/2019 Passenger and Cargo Limited Maximum Qty / Pack 10 L # Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002662 | Surface Coatings and Colourants (Flammable) Group Standard 2017 | #### GAMMA-GLYCIDOXYPROPYLTRIMETHOXYSILANE IS FOUND ON THE FOLLOWING REGULATORY LISTS New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) #### N-BUTYL ACETATE IS FOUND ON THE FOLLOWING REGULATORY LISTS | GESAMP/EHS Composite List - GESAMP Hazard Profiles | |--| | IMO IBC Code Chapter 17: Summary of minimum requirements | | IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk | | International Air Transport Association (IATA) Dangerous Goods Regulations | | International Maritime Dangerous Goods Requirements (IMDG Code) | | | New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity beyond which controls apply for closed containers | Quantity beyond which controls apply when use occurring in open containers | | |--------------|--|--|--| | 3.1C | 500 L in containers greater than 5 L
1500 L in containers up to and including 5 L | 250 L
250 L | | ### Certified Handler Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### **Tracking Requirements** Not Applicable ### **National Inventory Status** | National Inventory | Status | | |-------------------------------|---|--| | Australia - AICS | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (gamma-glycidoxypropyltrimethoxysilane; n-butyl acetate) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | Version No: 4.10 Page **13** of **13** Issue Date: 17/12/2019 Print Date: 17/12/2019 #### Carboguard 2929 Part B | Korea - KECI | Yes | | |---------------------|---|--| | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (gamma-glycidoxypropyltrimethoxysilane) | | | Vietnam - NCI | Yes | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 17/12/2019 | |---------------|------------| | Initial Date | 16/01/2018 | #### **SDS Version Summary** | Version | Issue Date | Sections Updated | |------------|------------|--| | 3.10.1.1.1 | 17/12/2019 | Classification, Environmental, Ingredients | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average ${\sf PC-STEL} : {\sf Permissible\ Concentration-Short\ Term\ Exposure\ Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.