Carboguard 504 Part A

ALTEX COATINGS LTD

Version No: **4.14**Safety Data Sheet according to HSNO Regulations

Chemwatch Hazard Alert Code: 4

Issue Date: 17/12/2019 Print Date: 17/12/2019 S.GHS.NZL.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Carboguard 504 Part A	
Synonyms	Not Available	
Proper shipping name PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIA (including paint thinning or reducing compound)		
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Part A of a two pack epoxy coating

Details of the supplier of the safety data sheet

Registered company name	ALTEX COATINGS LTD	
Address	91-111 Oropi Road, Tauranga, New Zealand Other New Zealand	
Telephone	64 7 5411221	
Fax	+64 7 5411310	
Website	Not Available	
Email	Email neil.debenham@altexcoatings.co.nz	

Emergency telephone number

Association / Organisation	NZ POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	0800 764 766	+64 800 700 112
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial ${\bf 01}$

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Ciassilication	Classification	[1]
----------------	----------------	-----

Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - single exposure Category 1, Flammable Liquid Category 2, Serious Eye Damage Category 1, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Reproductive Toxicity Category 2, Skin Sensitizer Category 1, Specific target organ toxicity - repeated exposure Category 1, Carcinogenicity Category 2, Chronic Aquatic Hazard Category 3

Legend:

1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Determined by Chemwatch using GHS/HSNO criteria

3.1B, 6.1D (inhalation), 6.1D (oral), 6.1E (respiratory), 6.3A, 8.3A, 6.5B (contact), 6.7B, 6.8B, 6.9A, 6.9B (narcotic effects), 9.1C

Label elements

Hazard pictogram(s)

SIGNAL	WORD	DANGER

Hazard statement(s)

H336	May cause drowsiness or dizziness.	
H370	Causes damage to organs. (Not specified) (Oral, Inhalation)	
H225	Highly flammable liquid and vapour.	
H318 Causes serious eye damage.		
H332	Harmful if inhaled.	

Version No: 4.14 Page 2 of 19 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part A

H335	May cause respiratory irritation.	
H302	Harmful if swallowed.	
H315	Causes skin irritation.	
H361	Suspected of damaging fertility or the unborn child.	
H317	May cause an allergic skin reaction.	
H372	dayses damage to organs through prolonged or repeated exposure. (Not specified) (Oral, Inhalation)	
H351 Suspected of causing cancer.		
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

Obtain special instructions before use.	
eep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
Do not breathe mist/vapours/spray.	
Use in a well-ventilated area.	
P280 Wear protective gloves/protective clothing/eye protection/face protection.	
Ground and bond container and receiving equipment.	
Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	
Use non-sparking tools.	
P243 Take action to prevent static discharges.	
P270 Do not eat, drink or smoke when using this product.	
Avoid release to the environment.	
P272 Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
IF exposed or concerned: Call a POISON CENTER/doctor/physician/first aider.	
Immediately call a POISON CENTER/doctor/physician/first aider.	
Specific treatment (see advice on this label).	
In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.	
IF ON SKIN: Wash with plenty of water and soap.	
If skin irritation or rash occurs: Get medical advice/attention.	
Take off contaminated clothing and wash it before reuse.	
IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
361+P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
Rinse mouth.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
108-10-1	10-20	methyl isobutyl ketone
14808-60-7	1-10	silica crystalline - quartz
71-36-3	1-10	n-butanol
25036-25-3	20-30	bisphenol A/ bisphenol A diglycidyl ether polymer
64742-95-6	1-10	naphtha petroleum, light aromatic solvent

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

Version No: 4.14 Page 3 of 19 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part A

If this product comes in contact with the eyes: ► Immediately hold eyelids apart and flush the eye continuously with running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ▶ Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. ▶ Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. ► Transport to hospital, or doctor. For thermal burns: ▶ Decontaminate area around burn. ▶ Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. ▶ Use compresses if running water is not available ▶ Cover with sterile non-adhesive bandage or clean cloth. ▶ Do NOT apply butter or ointments; this may cause infection. ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) ▶ Cool the burn by immerse in cold running water for 10-15 minutes. ▶ Use compresses if running water is not available. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. Skin Contact Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. ► Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings Do not soak burn in water or apply ointments or butter; this may cause infection. To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up. Check pulse and breathing to monitor for shock until emergency help arrives. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary Transport to hospital, or doctor, without delay.

Ingestion

- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.
- If swallowed do NOT induce vomiting

If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric layage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically.

for naphthalene intoxication: Naphthalene requires hepatic and microsomal activation prior to the production of toxic effects. Liver microsomes catalyse the initial synthesis of the reactive 1,2-epoxide intermediate which is subsequently oxidised to naphthalene dihydrodiol and alpha-naphthol. The 2-naphthoquinones are thought to produce haemolysis, the 1,2-naphthoquinones are thought to be responsible for producing cataracts in rabbits, and the glutathione-adducts of naphthalene-1,2-oxide are probably responsible for pulmonary toxicity. Suggested treatment regime:

- Induce emesis and/or perform gastric lavage with large amounts of warm water where oral poisoning is suspected.
- Instill a saline cathartic such as magnesium or sodium sulfate in water (15 to 30g).
- Demulcents such as milk, egg white, gelatin, or other protein solutions may be useful after the stomach is emptied but oils should be avoided because they promote absorption.
- If eyes/skin contaminated, flush with warm water followed by the application of a bland ointment.
- Severe anaemia, due to haemolysis, may require small repeated blood transfusions, preferably with red cells from a non-sensitive individual.
- Where intravascular haemolysis, with haemoglobinuria occurs, protect the kidneys by promoting a brisk flow of dilute urine with, for example, an osmotic diuretic such as mannitol. It may be useful to alkalinise the urine with small amounts of sodium bicarbonate but many researchers doubt whether this prevents blockage of the renal tubules.
- ▶ Use supportive measures in the case of acute renal failure. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed.

For acute or short term repeated exposures to xylene:

- ▶ Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.

Version No: **4.14** Page **4** of **19** Issue Date: **17/12/2019**

Carboguard 504 Part A Print Date: 17/12/2019

- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- ▶ Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- ▶ Wear breathing apparatus plus protective gloves in the event of a fire.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).

Fire Fighting

- Fight fire from a safe distance, with adequate cover.
 If safe, switch off electrical equipment until vapour fire hazard removed.
- ▶ Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- ► Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.

Liquid and vapour are highly flammable.

- ► Severe fire hazard when exposed to heat, flame and/or oxidisers.
- ► Vapour may travel a considerable distance to source of ignition.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ► On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2) aldehydes formaldehyde

silicon dioxide (SiO2)

metal oxides

other pyrolysis products typical of burning organic material.

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- ► Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
 Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Wipe up.
- ► Collect residues in a flammable waste container.

Maior Spills

- ► Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.

or Spills • Wear breathing apparatus plus protective gloves.

- Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.

Version No: 4.14 Page 5 of 19 Issue Date: 17/12/2019

Carboguard 504 Part A

Print Date: 17/12/2019

- Increase ventilation
- Stop leak if safe to do so.
- ▶ Water spray or fog may be used to disperse /absorb vapour.
- ▶ Contain spill with sand, earth or vermiculite
- Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- · Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- ▶ Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ► DO NOT allow clothing wet with material to stay in contact with skin

Other information

Suitable container

Storage incompatibility

- ▶ Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped
- Keep containers securely sealed.
- ▶ Store away from incompatible materials in a cool, dry well ventilated area.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- ▶ Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Barium sulfate (barytes)

- reacts violently with dimethyl sulfoxide, sodium acetylide, finely divided carbon, aluminium, magnesium, zirconium, and possibly other active metals, especially at elevated temperatures
- ▶ is incompatible with potassium, phosphorus (ignites when primed with nitrate-calcium silicide)

Methyl isobutyl ketone (MIBK)

- forms unstable and explosive peroxides on contact with air and/ or when in contact with hydrogen peroxide
- reacts violently with strong oxidisers, aldehydes, aliphatic amines, nitric acid, perchloric acid, potassium tert-butoxide, strong acids, reducing agents
- dissolves some plastics, resins and rubber

Xylenes:

- may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- ▶ attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

Version No: 4.14 Page 6 of 19 Issue Date: 17/12/2019

Carboquard 504 Part A

Print Date: 17/12/2019

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- ▶ Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

Titanium dioxide

- reacts with strong acids, strong oxidisers
- reacts violently with aluminium, calcium, hydrazine, lithium (at around 200 deg C.), magnesium, potassium, sodium, zinc, especially at elevated temperatures - these reactions involves reduction of the oxide and are accompanied by incandescence
- dust or powders can ignite and then explode in a carbon dioxide atmosphere
- Avoid reaction with amines, mercaptans, strong acids and oxidising agents

Formaldehyde:

- It is a strong reducing agent
- may polymerise in air unless properly inhibited (usually with methanol up to 15%) and stored at controlled temperatures
- will polymerize with active organic material such as phenol
- reacts violently with strong oxidisers, hydrogen peroxide, potassium permanganate, acrylonitrile, caustics (sodium hydroxide, yielding formic acid and flammable hydrogen), magnesium carbonate, nitromethane, nitrogen oxides (especially a elevated temperatures), peroxyformic
- is incompatible with strong acids (hydrochloric acid forms carcinogenic bis(chloromethyl)ether*), amines, ammonia, aniline, bisulfides, gelatin, iodine, magnesite, phenol, some monomers, tannins, salts of copper, iron, silver.
- acid catalysis can produce impurities: methylal, methyl formate

Aqueous solutions of formaldehyde:

- slowly oxidise in air to produce formic acid
- attack carbon steel

Concentrated solutions containing formaldehyde are:

- unstable, both oxidising slowly to form formic acid and polymerising; in dilute aqueous solutions formaldehyde appears as monomeric hydrate (methylene glycol) - the more concentrated the solution the more polyoxymethylene glycol occurs as oligomers and polymers (methanol and amine-containing compounds inhibit polymer formation)
- readily subject to polymerisation, at room temperature, in the presence of air and moisture, to form paraformaldehyde (8-100 units of formaldehyde), a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde; a cyclic trimer, trioxane (CH2O3), may

Flammable and/or toxic gases are generated by the combination of aldehydes with azo, diazo compounds, dithiocarbamates, nitrides, and strong reducing agents

*The empirical equation may be used to determine the concentration of bis(chloromethyl)ether (BCME) formed by reaction with HCI: $log(BCME)ppb = -2.25 + 0.67 \bullet log(HCHO) ppm + 0.77 \bullet log(HCl)ppm$

Assume values for formaldehyde, in air, of 1 ppm and for HCl of 5 ppm, resulting BCME concentration, in air, would be 0.02 ppb.

- react with hydrofluoric acid to produce silicon tetrafluoride gas
- react with xenon hexafluoride to produce explosive xenon trioxide
- reacts exothermically with oxygen difluoride, and explosively with chlorine trifluoride (these halogenated materials are not commonplace industrial materials) and other fluorine-containing compounds
- may react with fluorine, chlorates
- re incompatible with strong oxidisers, manganese trioxide, chlorine trioxide, strong alkalis, metal oxides, concentrated orthophosphoric acid, vinyl acetate
- may react vigorously when heated with alkali carbonates
- Segregate from alcohol, water.

Glycidyl ethers:

- may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be
- ▶ may polymerise in contact with heat, organic and inorganic free radical producing initiators
- ▶ may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines
- react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide
- ▶ attack some forms of plastics, coatings, and rubber

- Must not be stored together
- May be stored together with specific preventions

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	methyl isobutyl ketone	Methyl isobutyl ketone (Hexone)	50 ppm / 205 mg/m3	307 mg/m3 / 75 ppm	Not Available	Not Available

Version No: 4.14 Page **7** of **19** Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part A

	1	1	1	1	I .	f.
New Zealand Workplace Exposure Standards (WES)	silica crystalline - quartz	Silica-Crystalline (all forms) quartz and cristobalite are confirmed carcinogens (2016)	Not Available	Not Available	Not Available	6.7A - Confirmed carcinogen; (r)
New Zealand Workplace Exposure Standards (WES)	n-butanol	n-Butyl alcohol	Not Available	Not Available	50 ppm / 150 mg/m3	(skin) - Skin absorption
New Zealand Workplace Exposure Standards (WES)	bisphenol A/ bisphenol A dialycidyl ether polymer	Diesel Particulate Matter (DPM) as elemental carbon	0.1 mg/m3	Not Available	Not Available	(2016)

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
methyl isobutyl ketone	Methyl isobutyl ketone; (Hexone)	75 ppm	500 ppm	3000 ppm
silica crystalline - quartz	Silica, crystalline-quartz; (Silicon dioxide)	0.075 mg/m3	33 mg/m3	200 mg/m3
n-butanol	Butyl alcohol, n-; (n-Butanol)	60 ppm	800 ppm	8000 ppm
bisphenol A/ bisphenol A diglycidyl ether polymer	Epoxy resin; (Bisphenol A-Bisphenol A diglycidyl ether polymer)	6 mg/m3	66 mg/m3	400 mg/m3

Ingredient	Original IDLH	Revised IDLH
methyl isobutyl ketone	500 ppm	Not Available
silica crystalline - quartz	25 mg/m3 / 50 mg/m3	Not Available
n-butanol	1,400 ppm	Not Available
bisphenol A/ bisphenol A diglycidyl ether polymer	Not Available	Not Available
naphtha petroleum, light aromatic solvent	Not Available	Not Available

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
naphtha petroleum, light aromatic solvent	Е	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:	
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)	
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)	
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Version No: **4.14** Page **8** of **19** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part A

Personal protection

Safety glasses with side shields.Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Eye and face protection

See Hand protection below

NOTE:

- ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
 - chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

 Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed

moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times ,of:

- · Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- · Nitrile Butyl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair
- Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- Excellent breakthrough time > 480 min
- · Good breakthrough time > 20 min
- · Fair breakthrough time < 20 min
- Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

- **DO NOT** use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
- DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- ► Ensure there is ready access to a safety shower.

Version No: 4.14 Issue Date: 17/12/2019 Page 9 of 19

- Print Date: 17/12/2019 Carboguard 504 Part A
- ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- ▶ Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Carboguard 504 Part A

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
TEFLON	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator. Use respirators with protection factors appropriate for the exposure level.

- ▶ Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust
- ► Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- ▶ Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator
- Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode
- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Reactive diluents are generally colourless to yellow/ amber, low viscosity liquids with mild ether-like odour; solubility in water varies across the family. May contain trace residuals of epichlorohydrin a known skin irritant. coloured viscous liquid			
Physical state	Liquid	Relative density (Water = 1)	1.45	
		Partition coefficient n-octanol		

Physical state	Liquid	Relative density (Water = 1)	1.45
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	438
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	813.793
Initial boiling point and boiling range (°C)	122	Molecular weight (g/mol)	Not Available
Flash point (°C)	22	Taste	Not Available
Evaporation rate	1.3 BuAC = 1	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	8.3	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	27

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Version No: **4.14** Page **10** of **19** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part A

Vapour pressure (kPa)	0.7	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4 0	VOC a/L	221 40

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled

Information on toxicological effects

There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs.

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

The material has NOT been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence.

On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness.

Isobutanol appears to be more toxic than n-butyl alcohol. It may result in narcosis and death.

Inhalation of naphthalene vapour is linked with headache, loss of appetite, nausea, damage to the eyes and kidneys. According to animal testing, long term exposure may cause excessive weakness and increased salivation, weight loss, difficulty breathing, collapse, and evidence of damage to the skin, liver and lungs.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

Human overexposure to MIBK vapour may produce a dose dependent effect, including weakness, loss of appetite, headache, burning sensation to the eyes, abdominal pain, nausea, vomiting, sore throat, sleeplessness, sleepiness, heartburn, intestinal pain, central nervous system depression, narcosis, weakness, headache and nausea. Toxic kidney and liver damage in rats, as well as memory and behaviour changes in the baboon have been reported.

Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers.

Xylene is a central nervous system depressant

There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury.

Animal testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature sperm.

Ingestion

Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident.
Ingestion of soluble barium compounds may result in ulceration of the mucous membranes of the gastrointestinal tract, tightness in the muscles of the face and neck, gastroenteritis, vomiting, diarrhoea, muscular tremors and paralysis, anxiety, weakness, laboured breathing, cardiac irregularity due to contractions of smooth striated and cardiac muscles (often violent and painful), slow irregular pulse, hypertension, convulsions and respiratory failure.

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Ingestion of naphthalene and related compounds may produce abdominal cramps with nausea, vomiting, diarrhoea, headache, profuse sweating, listlessness, confusion, and in severe poisonings, coma with or without convulsions. Irritation of the bladder may also occur, producing urgency, painful urination, and the passage of brown or black urine with or without albumin or casts.

This material can cause inflammation of the skin on contact in some persons.

There is strong evidence to suggest that this material, on a single contact with skin, can cause very serious, irreversible damage of organs. The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin Contact

Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days.

and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days.

Application of isobutanol to human skin produced slight redness and blood congestion.

Workers sensitised to naphthalene and related compounds show an inflammation of the skin with scaling and reddening. Some individuals show an allergic reaction.

Open cuts, abraded or irritated skin should not be exposed to this material

Version No: 4.14 Page 11 of 19 Issue Date: 17/12/2019 Print Date: 17/12/2019 Carboguard 504 Part A Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If applied to the eyes, this material causes severe eye damage. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the cornea. Eve Long term exposure to naphthalene has produced clouding of the lens (cataracts) in workers. At concentrations of 100-200 ppm the vapour of MIBK may irritate the eyes and respiratory tract. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cancer growths were also more common in those animals exposed to isobutanol. Crystalline silicas activate the inflammatory response of white blood cells after they injure the lung epithelium. Chronic exposure to crystalline Chronic silicas reduces lung capacity and predisposes to chest infections. Long term exposure to vermiculite usually causes few hazards in low concentration and does not cause cancer. Over years, scarring of the lungs may develop; however tuberculosis does not occur. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions.

Exposure to some reactive diluents (notably, neopentylglycol diglycidyl ether, CAS RN: 17557-23-2) has caused cancer in some animal testing. Glycidyl ethers can cause genetic damage and cancer.

Animal testing indicates that inhalation of naphthalene may increase the incidence of respiratory tumours and may aggravate chronic inflammation.

MIBK may cause nerve changes leading to weakness and numbness. Long term occupational exposure may result in nausea, headache, burning eyes, and weakness. There may be drowsiness, sleeplessness, abdominal pain and slight liver enlargement.

Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.

Carboguard 504 Part A	TOXICITY	IRRITATION
Carboguaru 304 Part A	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >16000 mg/kg ^[2]	Eye (human): 200 ppm/15m
methyl isobutyl ketone	Oral (rat) LD50: 2080 mg/kg ^[2]	Eye (rabbit): 40 mg - SEVERE
		Eye (rabbit): 500 mg/24h - mild
		Skin (rabbit): 500 mg/24h - mild
	TOXICITY	IRRITATION
silica crystalline - quartz	Oral (rat) LD50: =500 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 3400 mg/kg ^[2]	Eye (human): 50 ppm - irritant
	Inhalation (rat) LC50: 24 mg/l/4H ^[2]	Eye (rabbit): 1.6 mg-SEVERE
n-butanol	Oral (rat) LD50: 790 mg/kg ^[2]	Eye (rabbit): 24 mg/24h-SEVERE
		Eye: adverse effect observed (irreversible damage) ^[1]
		Skin (rabbit): 405 mg/24h-moderate
		Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRRITATION
bisphenol A/ bisphenol A diglycidyl ether polymer	dermal (rat) LD50: >2000 mg/kg ^[2]	Not Available
digiyolayi etner polymer	Oral (rat) LD50: >2000 mg/kg ^[2]	
	TOXICITY	IRRITATION
naphtha petroleum, light	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
aromatic solvent	Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2]	Skin: adverse effect observed (irritating) ^[1]
	Oral (rat) LD50: >4500 mg/kg ^[1]	
Legend:	1 Value obtained from Europe ECHA Periotered Substances	: - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherw.

Carboquard 504 Part A

Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours.

Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm.

Glycidyl ethers can cause genetic damage and cancer.

Version No: 4.14 Page 12 of 19 Issue Date: 17/12/2019 Print Date: 17/12/2019 Carboquard 504 Part A Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) share many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. For 1.2-butylene oxide (ethyloxirane): In animal testing, ethyloxirane increased the incidence of tumours of the airways in animals exposed via inhalation. However, tumours were not observed in mice chronically exposed via skin. Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene

METHYL ISOBUTYL KETONE

MIBK is primarily absorbed by the lungs in animals and humans but can be absorbed by the skin, stomach and gut. If inhaled, it may be found in the brain, liver, lung, vitreous fluid, kidney and blood. Oral and respiratory routes of exposure are of minimal effect with changes seen only in the liver and kidney. MIBK does not cause genetic damage or harm the foetus or offspring, and has low toxicity to aquatic organisms.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

SILICA CRYSTALLINE -

QUARTZ

N-BUTANOL

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

The International Agency for Research on Cancer (IARC) has classified occupational exposures to respirable (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung

Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours.

oxide), which are also direct-acting alkylating agents, have been classified as causing cancer.

* Millions of particles per cubic foot (based on impinger samples counted by light field techniques).

NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles.

The material may produce severe irritation to the eve causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis For n-butanol:

Acute toxicity: In animal testing, n-butanol (BA) was only slightly toxic, following exposure by swallowing, skin contact or irritation. Animal testing and human experience suggest that n-butanol is moderately irritating to the skin but severely irritating to the eye. Human studies show that BA is not likely to cause skin sensitization. Warning of exposure occurs before irritation of the nose, because n-butanol has an odour which can be detected below concentration levels cause irritation.

Repeat dose toxicity: Animal testing showed temporarily reduction in activity and food intake following repeated exposure to BA, but otherwise there was no evidence of chronic toxicity.

Reproductive toxicity: Several animal studies indicate BA does not possess reproductive toxicity, and does not affect fertility. Developmental toxicity: BA only caused developmental changes and toxic effects on the foetus near or at levels that were toxic to the mother. Genetic toxicity: Testing shows that BA does not possess genetic toxicity.

Cancer-causing potential: Based on negative results from testing for potential of n-butanol to cause mutations and chromosomal aberrations, BA has a very small potential for causing cancer.

BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER **POLYMER**

*Hexion MSDS Epikote 1001 No significant acute toxicological data identified in literature search.

NAPHTHA PETROLEUM. LIGHT AROMATIC SOLVENT For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively.

Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin.

Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutation-causing ability. No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing. Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother. * [Devoe]

Carboguard 504 Part A & METHYL ISOBUTYL KETONE & N-BUTANOL & BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER & NAPHTHA PETROLEUM. LIGHT AROMATIC SOLVENT

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skin. Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight but had no reproductive effects

Carboquard 504 Part A & **BISPHENOL A/ BISPHENOL A** DIGLYCIDYL ETHER POLYMER

Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causing potential in humans.

Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have so far been negative.

Immunotoxicity: Animal testing suggests regular injections of diluted BADGE may result in sensitization.

Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption.

The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics

Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Version No: 4.14 Page 13 of 19 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part A

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield: the most active

compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular

 $configuration\ are\ suitable\ for\ appropriate\ hydrogen\ bonding\ to\ the\ acceptor\ site\ of\ the\ oestrogen\ receptor.$

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine.

Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation.

Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness.

Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils

Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations.

Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity.

METHYL ISOBUTYL KETONE & N-BUTANOL

Carboguard 504 Part A &

NAPHTHA PETROLEUM,

LIGHT AROMATIC SOLVENT

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification - Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
Carboguard 504 Part A	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	69.808mg/L	3
methyl isobutyl ketone	EC50	48	Crustacea	=170mg/L	1
	EC50	96	Algae or other aquatic plants	275.488mg/L	3
	NOEC	504	Crustacea	30mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
silica crystalline - quartz	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	1-376mg/L	2
	EC50	48	Crustacea	1-328mg/L	2
n-butanol	EC50	96	Algae or other aquatic plants	225mg/L	2
	BCF	24	Fish	921mg/L	4
	EC0	48	Crustacea	1-260mg/L	2
	NOEC	504	Crustacea	4.1mg/L	2
hiambawal A/hiambawal A	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
bisphenol A/ bisphenol A diglycidyl ether polymer	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	4.1mg/L	2
naphtha petroleum, light aromatic solvent	EC50	48	Crustacea	3.2mg/L	2
ai Oillatio Solvelli	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	72	Algae or other aquatic plants	=1mg/L	1

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment

Version No: **4.14** Page **14** of **19** Issue Date: **17/12/2019**

Carboguard 504 Part A

Print Date: 17/12/2019

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For 1,2,4 - Trimethylbenzene:

Half-life (hr) air: 0.48-16;

Half-life (hr) H2O surface water: 0.24 -672;

Half-life (hr) H2O ground: 336-1344;

Half-life (hr) soil: 168-672;

Henry's Pa m3/mol: 385 -627;

Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance.

Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days).

Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations.

Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfole) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

For Methyl Isobutyl Ketone (MIBK): Log Kow: 1.19-1.31; Koc: 19-106; Half-life (hr) air: 15 to 17; Half-life (hr) Surface Water: 15-33; Vapor Pressure: 14.5 mm Hg @ 20 C; Henry staw Constant: 9.4 x 10-5 atm-m3/mol; E-05BOD 5: 0.12-2.14, 4. 4%; COD: 2.16, 79%; ThOD: 2.72; BCF: 2-5.

Atmospheric Fate: MIBK has a short half-life in the atmosphere; however, it may contribute to the formation of photochemical smog. The main degradation pathway for MIBK in the atmosphere is via reactions hydroxyl radicals; the half-life for this reaction is estimated to be 16-17 hours. The substance is expected to be directly broken down by sunlight, with a half-life of 15 hours with acetone as the by-product. MIBK is moderately reactive with nitrogen oxides producing acetone, peroxyacetylnitrate and methyl nitrate. As a volatile organic chemical, (VOC), MIBK can contribute to photochemical smog in the presence of other VOCs.

Terrestrial Fate: This substance is expected to evaporate from moist/dry soil surfaces and be broken down by sunlight on soil surfaces. The substance is highly mobile and may be leached from the soil by water, and is susceptible to degradation by mixed populations of oxygen using microorganisms.

Aquatic Fate: MIBK is degraded biologically in water. MIBK is not expected to be retarded by absorption to soils rich in organic matter; therefore it is expected to be mobile in soil and subject to leaching. When released to water, MIBK does not adsorb significantly to suspended solids, and will evaporate.

Ecotoxicity: The substance is not expected to accumulate/concentrate in fish and other aquatic organisms. The toxicity of MIBK to microorganisms and aquatic organisms is low.

MIBK also has low toxicity in terrestrial rodents for oral and inhalation exposure. It is moderately toxic to birds, including red-winged blackbirds, fathead minnow, and goldfish and has low toxicity to Daphnia magna water fleas and brine shrimp.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

Version No: **4.14** Page **15** of **19** Issue Date: **17/12/2019**

Carboguard 504 Part A

Print Date: 17/12/2019

For 1,2-Butylene oxide (Ethyloxirane):

log Kow values of 0.68 and 0.86. BAF and BCF: 1 to 17 L./kg.

Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days.

Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil.

Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days).

Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L.

For Barium and its Compounds:

Environmental Fate: Barium is a highly reactive metal occurring naturally only in a combined state, primarily as inorganic complexes. Conditions such as pH, oxidation-reduction potential, cation exchange capacity, and the presence of sulfate, carbonate, and the presence of metal oxides will affect the partitioning of barium and its compounds in the environment. The element is released to environmental by both natural processes and man-made sources. Most barium released to the environment from industrial sources is in forms that do not become widely dispersed.

Atmospheric Fate: In the atmosphere, barium is likely to be present in particulate form. Barium compounds will be removed from the atmosphere via wet/dry deposition. The substance may change to different forms of barium in the air.

Terrestrial Fate: Soil - Barium will leach from geological formations to groundwater and will adsorb to soil. Barium is not very mobile in most soil systems and will form soluble complexes with fulvic/humic acids. Transportation rates of barium in soil are dependent on the characteristics of soil material. In soils with high positive ion exchange capacity, (e.g., fine textured mineral soils or soils with high organic matter content), barium mobility will be limited by adsorption. Soils high in calcium carbonate leave barium carbonate residues, which limit mobility. Barium produces barium sulfate residues in the presence of sulfates. Barium is more mobile, and is more likely to be leached, from soils in the presence of chloride and under acidic conditions. Barium binds with fatty acids, (e.g., in acidic landfill leachate), and will be much more mobile in soils containing fatty acids. Plants - Barium is not expected to concentrate in plants, relative to amounts found in soils; however, there are some plants, (beans, forage plants, Brazil nuts, and mushrooms), which accumulate barium.

Aquatic Fate: Barium will adsorb to sediment/suspended particulate matter. Precipitation of barium sulfate salts is accelerated where rivers enter the ocean. Sedimentation of suspended solids removes a large portion of the barium content from surface waters. Barium in sediments is found largely in the form of barium sulfate, (barite).

Ecotoxicity: Barium concentration will increase as it moves up the food chain in both land and aquatic species. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt, (i.e. barium sulfate/barium sulfite). The uptake of barium by fish and marine organisms is also an important removal mechanism. Barium may concentrate in marine plants by a factor of 400-4,000 times the level present in the water. The substance may concentrate in marine animals, plankton, and brown algae.

For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

For naphthalene:

Environmental Fate: Naphthalene may be reach surface water and soil through transportation in water or being carried by air. Most airborne naphthalene is in a vapour form and hence deposition is expected to be slow. A minimal amount of naphthalene emitted to the air is transported to other environmental components mostly by dry deposition. Naphthalene in surface water may volatililize into the atmosphere, depending on environmental condiditons. It remains in solution in water, with only small amounts associated with suspended material and benthic sediments. While naphthalene is readily volatilized from aerated soils, it adheres to soils with a high organic content. Adsorption to aquifer material reduces transportation of naphthalene through groundwater, and the presence of nonionic organic compounds such as tetrachloroethene may enhance sorption to materials that contain low carbon content. Bioconcentration of naphthalene is moderate in aquatic organisms. It is readily metabolized by fish, and invertebrates that are placed in pollutant free water rapidly eliminate any traces of the pollutant. While bioaccumulation in the food chain is unlikely, exposure of cows and chickens to naphthalene could lead to naphthalene being present in milk and eggs. While the data on the transport and partitioning of methylnaphthalenes in the environment is limited, the characteristics of these chemicals are similar to naphthalene, so they are expected to behave in a similar manner to naphthalene in the environment, and produce the same effects on aquatic organisms. Biodegradation of naphthalene occurs relatively quickly in aquatic systems. Methylnaphthalenes are biodegraded under aerobic conditions after adaptation. Degradation rates are highest in water constantly polluted with petroleum. Naphthalene biodegradation rates are higher in sediment than in the water column above it. Methylnaphthalenes biodegrades more slowly. Reported half-lives in sediments were 46 weeks for 1-methylnaphthalene and ranged from 14 to 50 weeks for 2-methylnaphthalene. In soils, the potential for biodegradation is an important factor for biological remediation of soil. Studies on biodegradation of PAHs suggest that adsorption to the organic matter significantly reduces the bioavailability for microorganisms, and thus the biodegradability, of PAHs, including naphthalene. Biodegradation is accomplished through the action of aerobic microorganisms and is reduced in anaerobic soil conditions. Naphthalene biodegrades to carbon dioxide in aerobic soils, with salicylate as an intermediate product. Abiotic degradation of naphthalene seldom occurs in soils. As with naphthalene, 1-Methylnaphthalene is easily volatilised from aerated soil, and the biodegradation half-life averages between 1.7 and 2.2 days

Ecotoxicity: Acute toxicity data on naphthalene for several fish species (freshwater and marine), show 96h LC50 values range from 1.8 to 7.8 mg/L. Comparable results were obtained with other vertebrates (amphibians). From chronic toxicity tests, a precise NOEL is not clearly determined. A NOEC of 0.12 mg/L was observed in a 40 days test on juvenile pink salmon, but 50% mortality at 0.11 mg/L was calculated for trout fry exposed during hatching. Several data are also available for invertebrates, showing 48h EC50 values ranging from 2.1 to 24 mg/L. While chronic data on freshwater invertebrates and algae are questionable, a 50% photosynthesis reduction was observed at 2.8 mg/L in 4 hours experiments. QSAR prediction models give results consistent with experimental short-term data on fish daphnia and algae.

Environmental Fate: Formaldehyde is common in the environment as a contaminant of smoke and as photochemical smog. Concentrated solutions containing formaldehyde are unstable and oxidize slowly. In the presence of air and moisture, polymerization takes place readily in concentrated solutions at room temperature to form paraformaldehyde. Atmospheric Fate: In the atmosphere, formaldehyde both photolysis and reacts with reactive free radicals (primarily hydroxyl radicals). Reaction with nitrate radicals, insignificant during the day, may be an important removal process at night. Air Quality Standards: <0.1 mg/m3 as a 30 min. average, indoor air, non-industrial buildings (WHO guideline). Aquatic Fate: Due to its solubility, formaldehyde will efficiently transfer to rain and surface water and will biodegrade to low concentrations within days. Adsorption to sediment and volatilization are not expected to be significant routes of biodegradation.

Drinking Water Standard: Formaldehyde: 900 ug/L. (WHO guideline).

Terrestrial Fate: In soil, aqueous solutions of formaldehyde leach through the soil; at high concentrations adsorption to clay minerals may occur. Although biodegradable under both

Version No: 4.14 Issue Date: 17/12/2019 Page 16 of 19 Print Date: 17/12/2019

Carboguard 504 Part A

aerobic and anaerobic conditions the fate of formaldehyde in soil is unclear.

Ecotoxicity: Formaldehyde does not bioconcentrate in the food chain.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl isobutyl ketone	HIGH (Half-life = 7001 days)	LOW (Half-life = 1.9 days)
n-butanol	LOW (Half-life = 54 days)	LOW (Half-life = 3.65 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
methyl isobutyl ketone	LOW (LogKOW = 1.31)
n-butanol	LOW (BCF = 0.64)

Mobility in soil

Ingredient	Mobility
methyl isobutyl ketone	LOW (KOC = 10.91)
n-butanol	MEDIUM (KOC = 2.443)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

- (1) a blast overpressure of more than 9 kPa; or
- (2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 TRANSPORT INFORMATION

Labels Required

NO

Marine	Pollutan

HAZCHEM

•3YE

Version No: **4.14** Page **17** of **19** Issue Date: **17/12/2019**

Carboguard 504 Part A

Print Date: 17/12/2019

Land transport (UN)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Transport hazard class(es)	Class 3 Subrisk Not Applicable
Packing group	П
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 163; 367 Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

UN number	1263	
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)	
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L	
Packing group	II	
Environmental hazard	Not Applicable	
	Special provisions	A3 A72 A192
	Cargo Only Packing Instructions	364
	Cargo Only Maximum Qty / Pack	60 L
Special precautions for user	Passenger and Cargo Packing Instructions	353
	Passenger and Cargo Maximum Qty / Pack	5 L
	Passenger and Cargo Limited Quantity Packing Instructions	Y341
	Passenger and Cargo Limited Maximum Qty / Pack	1L

Sea transport (IMDG-Code / GGVSee)

UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable	
Packing group	П	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number F-E , S-E Special provisions 163 367 Limited Quantities 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

${\bf Safety, \, health \, and \, environmental \, regulations \, / \, legislation \, specific \, for \, the \, substance \, or \, mixture}$

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002669	Surface Coatings and Colourants (Flammable, Toxic [6.7]) Group Standard 2017

METHYL ISOBUTYL KETONE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Version No: 4.14 Page 18 of 19 Issue Date: 17/12/2019

Carboguard 504 Part A

Print Date: 17/12/2019

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

SILICA CRYSTALLINE - QUARTZ IS FOUND ON THE FOLLOWING REGULATORY LISTS

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

of Chemicals - Classification Data

New Zealand Workplace Exposure Standards (WES)

of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

N-BUTANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances

IMO Provisional Categorization of Liquid Substances - List 1: Pure or technically pure products

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

United Nations Recommendations on the Transport of Dangerous Goods Model

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

United Nations Recommendations on the Transport of Dangerous Goods Model

Regulations

BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures

containing at least 99% by weight of components already assessed by IMO International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule; Dangerous Goods 2005 - Schedule 2 Dangerous Goods in Limited Quantities and Consumer Commodities

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity beyond which controls apply for closed containers	Quantity beyond which controls apply when use occurring in open containers
3.1B	100 L in containers greater than 5 L 250 L in containers up to and including 5 L	50 L 50 L

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
3.1B	250 L (when in containers greater than 5 L) 500 L (when in containers up to and including 5 L)

Refer Group Standards for further information

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (n-butanol; naphtha petroleum, light aromatic solvent; silica crystalline - quartz; bisphenol A/ bisphenol A diglycidyl ether polymer; methyl isobutyl ketone)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (bisphenol A/ bisphenol A diglycidyl ether polymer)
Japan - ENCS	No (bisphenol A/ bisphenol A diglycidyl ether polymer; methyl isobutyl ketone)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (bisphenol A/ bisphenol A diglycidyl ether polymer)
Vietnam - NCI	Yes

Version No: 4.14 Page **19** of **19** Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part A

Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	17/12/2019
Initial Date	15/03/2018

SDS Version Summary

Version	Issue Date	Sections Updated
3.14.1.1.1	17/12/2019	Environmental, Exposure Standard, Ingredients, Storage (storage incompatibility)

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.

Carboguard 504 Part B

ALTEX COATINGS LTD

Version No: **6.17**Safety Data Sheet according to HSNO Regulations

Chemwatch Hazard Alert Code: 3

Issue Date: 17/12/2019 Print Date: 17/12/2019 S.GHS.NZL.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Carboguard 504 Part B
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Part A of a two pack epoxy coating

Details of the supplier of the safety data sheet

Registered company name	ALTEX COATINGS LTD
Address	91-111 Oropi Road, Tauranga, New Zealand Other New Zealand
Telephone	+64 7 5411221
Fax	+64 7 5411310
Website	Not Available
Email	neil.debenham@altexcoatings.co.nz

Emergency telephone number

Association / Organisation	NZ POISONS CENTRE	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	0800 764 766	+64 800 700 112
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Determined by Chemwatch using GHS/HSNO criteria	3.1C, 6.1D (dermal), 6.1D (inhalation), 6.1E (aspiration), 6.1E (respiratory), 6.3A, 8.3A, 6.5B (contact), 6.7B, 6.9B, 9.1B
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Classification ^[1]	Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Chronic Aquatic Hazard Category 2, Acute Toxicity (Dermal) Category 4, Specific target organ toxicity - repeated exposure Category 2, Serious Eye Damage Category 1, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Aspiration Hazard Category 1, Carcinogenicity Category 2

Label elements

Hazard pictogram(s)

SIGNAL WORD	DANGE

Hazard statement(s)

H226	Flammable liquid and vapour.
H336	May cause drowsiness or dizziness.
H411	Toxic to aquatic life with long lasting effects.
H312	Harmful in contact with skin.
H373	May cause damage to organs through prolonged or repeated exposure. (Not specified) (Dermal, Inhalation)

Version No: 6.17 Page 2 of 18 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part B

H318	Causes serious eye damage.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H304	May be fatal if swallowed and enters airways.
H351	Suspected of causing cancer.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P260	Do not breathe mist/vapours/spray.
P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P310	F SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.		
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P308+P313	exposed or concerned: Get medical advice/ attention.		
P321	cific treatment (see advice on this label).		
P331	Do NOT induce vomiting.		
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P391	Collect spillage.		
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
71-36-3	1-10	n-butanol	
64742-95-6	70-80	naphtha petroleum, light aromatic solvent	
112-24-3	<=1	triethylenetetramine	
68410-23-1	10-20	C18 fatty acid dimers/ polyethylenepolyamine polyamides	

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper
- ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.

Version No: 6.17 Page 3 of 18 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboquard 504 Part B

 Transport to hospital or doctor without delay. Removal of contact lenses after an eve injury should only be undertaken by skilled personnel. If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. Skin Contact Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor, without delay. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of If poisoning occurs, contact a doctor or Poisons Information Centre. red do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

for naphthalene intoxication: Naphthalene requires hepatic and microsomal activation prior to the production of toxic effects. Liver microsomes catalyse the initial synthesis of the reactive 1,2-epoxide intermediate which is subsequently oxidised to naphthalene dihydrodiol and alpha-naphthol. The 2-naphthoguinones are thought to produce haemolysis, the 1,2-naphthoquinones are thought to be responsible for producing cataracts in rabbits, and the glutathione-adducts of naphthalene-1,2-oxide are probably responsible for pulmonary toxicity. Suggested treatment regime:

- Induce emesis and/or perform gastric lavage with large amounts of warm water where oral poisoning is suspected.
- Instill a saline cathartic such as magnesium or sodium sulfate in water (15 to 30g).
- Demulcents such as milk, egg white, gelatin, or other protein solutions may be useful after the stomach is emptied but oils should be avoided because they promote absorption.
- If eyes/skin contaminated, flush with warm water followed by the application of a bland ointment.
- Severe anaemia, due to haemolysis, may require small repeated blood transfusions, preferably with red cells from a non-sensitive individual.
- Where intravascular haemolysis, with haemoglobinuria occurs, protect the kidneys by promoting a brisk flow of dilute urine with, for example, an osmotic diuretic such as mannitol. It may be useful to alkalinise the urine with small amounts of sodium bicarbonate but many researchers doubt whether this prevents blockage of the renal tubules.

 • Use supportive measures in the case of acute renal failure. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed.

For exposures to quaternary ammonium compounds;

- For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs.
- For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage.
- If hypotension becomes severe, institute measures against circulatory shock.
- If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy.
- Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al, Clinical Toxicology of Commercial Products1

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Methylhippu-ric acids in urine 1.5 gm/gm creatinine 2 mg/min

Sampling Time End of shift Last 4 hrs of shift Comments

Version No: 6.17 Page 4 of 18 Issue Date: 17/12/2019

Carboguard 504 Part B

Print Date: 17/12/2019

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Foam.
- ► Dry chemical powder.
- ► BCF (where regulations permit).
- ► Carbon dioxide.
- ▶ Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Special nazards arising from the substrate or mixture					
Fire Incompatibility	► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result				
Advice for firefighters					
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 				
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) carbon monoxide (CO) nitrogen oxides (NOX) 				

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

other pyrolysis products typical of burning organic material.

May emit clouds of acrid smoke

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	▶ Remove all ignition sources.
	► Clean up all spills immediately.
	Avoid breathing vapours and contact with skin and eyes.
Minor Spills	Control personal contact with the substance, by using protective equipment.
	 Contain and absorb small quantities with vermiculite or other absorbent material.
	▶ Wipe up.
	► Collect residues in a flammable waste container.
	► Clear area of personnel and move upwind.
	► Alert Fire Brigade and tell them location and nature of hazard.
	► May be violently or explosively reactive.
	▶ Wear breathing apparatus plus protective gloves.
	► Prevent, by any means available, spillage from entering drains or water course.
	Consider evacuation (or protect in place).
	▶ No smoking, naked lights or ignition sources.
	▶ Increase ventilation.
Major Spills	▶ Stop leak if safe to do so.
.,	► Water spray or fog may be used to disperse /absorb vapour.
	► Contain spill with sand, earth or vermiculite.
	► Use only spark-free shovels and explosion proof equipment.
	► Collect recoverable product into labelled containers for recycling.
	► Absorb remaining product with sand, earth or vermiculite.
	► Collect solid residues and seal in labelled drums for disposal.
	► Wash area and prevent runoff into drains.
	If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Version No: **6.17** Page **5** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B Print Date: 17/12/2019

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur.

- ► Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ Electrostatic discharge may be generated during pumping this may result in fire.
- ► Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- ▶ Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Safe handling

 Use in a well-ventilated area.
 - Prevent concentration in hollows and sumps.
 - DO NOT enter confined spaces until atmosphere has been checked.
 - Avoid smoking, naked lights or ignition sources.
 - Avoid generation of static electricity.
 - ► DO NOT use plastic buckets.
 - Earth all lines and equipment.
 - ► Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 When handling, DO NOT eat, drink or smoke
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
 - ► DO NOT allow clothing wet with material to stay in contact with skin
 - ▶ Store in original containers in approved flammable liquid storage area.
 - ▶ Store away from incompatible materials in a cool, dry, well-ventilated area.
 - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
 - ▶ No smoking, naked lights, heat or ignition sources.
 - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
 - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
 - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
 - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
 - ▶ Keep adsorbents for leaks and spills readily available.
 - ▶ Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ice build-up.
- Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Other information

Suitable container

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

- Quaternary ammonium cations are unreactive toward even strong electrophiles, oxidants, and acids. They also are stable toward
 most nucleophiles. The latter is indicated by the stability of the hydroxide salts such as tetramethylammonium hydroxide and
 tetrabutylammonium hydroxide.
- Quaternary ammonium compounds are deactivated by anionic detergents (including common soaps).
- With exceptionally strong bases, quat cations degrade. They undergo Sommelet–Hauser rearrangement and Stevens rearrangement, as well as dealkylation under harsh conditions. Quaternary ammonium cations containing N–C–C–H units can also undergo the Hofmann elimination and Emde degradation.

Xylenes

- may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- ▶ attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

Continued...

Version No: **6.17** Page **6** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B

Print Date: 17/12/2019

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- Avoid strong acids, bases.
 - · Imidazole may be regarded as possessing pyrrole and pyridine like properties and therefore its reactivity might resemble that of the others. In general imidazole, in common with pyrazole, is less reactive than pyrrole and more reactive than benzene.
 - · One peculiarity of imidazole is the impossibility to distinguish the two nitrogen atoms in solution. The hydrogen moves according to a tautomeric equilibria (that is exactly 50% of each form) from one nitrogen to the other.
 - · In imidazole C4 and C5 are electron rich, whilst C2 is electron deficient. Imidazole can behave as both an electrophile and a nucleophile. The nucleophilic reaction leads of N-substituted imidazoles.
 - Imidazole is an amphoteric substance. The acid base behaviour of imidazole is important in determining its reactivity, because it is not just an amphoteric substance, thanks to the pyrrole-like and pyridine-like nitrogen but is also consistently more basic than pyridine (pKa of the conjugated acid 5.3) and more acidic than pyrrole (pKa 17.5). It all depends on the symmetry of the nitrogen atoms, that can equally stabilize either the positive (a proton) or the negative charge.

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	n-butanol	n-Butyl alcohol	Not Available	Not Available	50 ppm / 150 mg/m3	(skin) - Skin absorption

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
n-butanol	Butyl alcohol, n-; (n-Butanol)	60 ppm	800 ppm	8000 ppm
triethylenetetramine	Triethylenetetramine	3 ppm	14 ppm	83 ppm
C18 fatty acid dimers/ polyethylenepolyamine polyamides	C-18 Unsaturated fatty acid, dimers, reaction products with polyethylenepolyamines; (Versamid 140 polyamide resin; Versamid 125)	30 mg/m3	330 mg/m3	2,000 mg/m3

Ingredient	Original IDLH	Revised IDLH
n-butanol	1,400 ppm	Not Available
naphtha petroleum, light aromatic solvent	Not Available	Not Available
triethylenetetramine	Not Available	Not Available
C18 fatty acid dimers/ polyethylenepolyamine polyamides	Not Available	Not Available

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
naphtha petroleum, light aromatic solvent	E	≤ 0.1 ppm
triethylenetetramine	E	≤ 0.1 ppm
C18 fatty acid dimers/ polyethylenepolyamine polyamides	Е	≤ 0.1 ppm

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Version No: **6.17** Page **7** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B

Print Date: 17/12/2019

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- ► Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Hands/feet protection

Skin protection

Eye and face protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

Issue Date: 17/12/2019 Version No: 6.17 Page 8 of 18

Carboguard 504 Part B

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

- Overalls
- ► PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Evewash unit.
- Ensure there is ready access to a safety shower

Other protection

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- · For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Carboguard 504 Part B

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
TEFLON	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			∆irlino**

- Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
 - ► Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
 - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Print Date: 17/12/2019

Version No: 6.17 Issue Date: 17/12/2019 Page 9 of 18 Print Date: 17/12/2019

Carboquard 504 Part B

Appearance	amber liquid		
Physical state	Liquid	Relative density (Water = 1)	0.88
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	498
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	152	Molecular weight (g/mol)	Not Available
Flash point (°C)	37	Taste	Not Available
Evaporation rate	1 BuAC = 1	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.2	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	0.6	Volatile Component (%vol)	82
Vapour pressure (kPa)	0.3	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4.2	VOC g/L	767.77

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation of epoxy resin amine hardeners (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine

Inhalation hazard is increased at higher temperatures.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhaled

On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness.

Inhalation of naphthalene vapour is linked with headache, loss of appetite, nausea, damage to the eyes and kidneys. According to animal testing, long term exposure may cause excessive weakness and increased salivation, weight loss, difficulty breathing, collapse, and evidence of damage to the skin, liver and lungs.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xvlene is a central nervous system depressant

Version No: **6.17** Page **10** of **18** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part B

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum. Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the oesophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain Ingestion blood and mucous. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Ingestion of naphthalene and related compounds may produce abdominal cramps with nausea, vomiting, diarrhoea, headache, profuse sweating, listlessness, confusion, and in severe poisonings, coma with or without convulsions. Irritation of the bladder may also occur, producing urgency, painful urination, and the passage of brown or black urine with or without albumin or casts. Skin contact with the material may be harmful; systemic effects may result following absorption. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Cationic surfactants cause skin irritation, and, in high concentrations, caustic burns. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Workers sensitised to naphthalene and related compounds show an inflammation of the skin with scaling and reddening. Some individuals show Skin Contact an allergic reaction Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to. If applied to the eyes, this material causes severe eye damage. Many cationic surfactants are very irritating to the eyes at low concentration. Concentrated solutions can cause severe burns with permanent clouding Eye Long term exposure to naphthalene has produced clouding of the lens (cataracts) in workers. Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Imidazole is structurally related, and has been used to counteract the effects of histamine. Imidazoles have been reported to disrupt male fertility, through disruption of the function of the testes Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss Chronic and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Prolonged or repeated skin contact may cause degreasing, followed by drying, cracking and skin inflammation. Animal testing indicates that inhalation of naphthalene may increase the incidence of respiratory tumours and may aggravate chronic inflammation. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. TOXICITY IRRITATION Carboguard 504 Part B Not Available Not Available

		'
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 3400 mg/kg ^[2]	Eye (human): 50 ppm - irritant
	Inhalation (rat) LC50: 24 mg/l/4H ^[2]	Eye (rabbit): 1.6 mg-SEVERE
n-butanol	Oral (rat) LD50: 790 mg/kg ^[2]	Eye (rabbit): 24 mg/24h-SEVERE
		Eye: adverse effect observed (irreversible damage) ^[1]
		Skin (rabbit): 405 mg/24h-moderate
		Skin: adverse effect observed (irritating) ^[1]
naphtha petroleum, light	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
aromatic solvent	Inhalation (rat) LC50: >7331.62506 mg/l/8h* ^[2]	Skin: adverse effect observed (irritating) ^[1]
	Oral (rat) LD50: >4500 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: =550 mg/kg ^[2]	Eye (rabbit):20 mg/24 h - moderate
triethylenetetramine	Oral (rat) LD50: 2500 mg/kg ^[2]	Eye (rabbit); 49 mg - SEVERE
		Skin (rabbit): 490 mg open SEVERE
		Skin (rabbit): 5 mg/24 SEVERE

Version No: **6.17** Page **11** of **18** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part B

TOXICITY IRRITATION C18 fatty acid dimers/ dermal (rat) LD50: >2000 mg/kg^[1] Not Available polyethylenepolyamine polyamides Oral (rat) LD50: >2000 mg/kg^[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins. The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the Carboquard 504 Part B gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eves with R38 and R41. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin Acute toxicity: In animal testing, n-butanol (BA) was only slightly toxic, following exposure by swallowing, skin contact or irritation. Animal testing and human experience suggest that n-butanol is moderately irritating to the skin but severely irritating to the eye. Human studies show that BA is not likely to cause skin sensitization. Warning of exposure occurs before irritation of the nose, because n-butanol has an odour which can be detected below concentration levels cause irritation. N-BUTANOL Repeat dose toxicity: Animal testing showed temporarily reduction in activity and food intake following repeated exposure to BA, but otherwise there was no evidence of chronic toxicity. Reproductive toxicity: Several animal studies indicate BA does not possess reproductive toxicity, and does not affect fertility. Developmental toxicity: BA only caused developmental changes and toxic effects on the foetus near or at levels that were toxic to the mother. Genetic toxicity: Testing shows that BA does not possess genetic toxicity. Cancer-causing potential: Based on negative results from testing for potential of n-butanol to cause mutations and chromosomal aberrations, BA has a very small potential for causing cancer. For C9 aromatics (typically trimethylbenzenes - TMBs) Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively. Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that NAPHTHA PETROLEUM. it sensitizes skin. LIGHT AROMATIC SOLVENT Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing. Reproductive and developmental toxicity. No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother. * [Devoe] The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration For alkyl polyamines: The alkyl polyamines cluster consists of two terminal primary and at least one secondary amine groups and are derivatives of low molecular weight ethylenediamine, propylenediamine or hexanediamine. Toxicity depends on route of exposure. Cluster members have been shown to **TRIETHYLENETETRAMINE** cause skin irritation or sensitisation, eye irritation and genetic defects, but have not been shown to cause cancer. Triethylenetetramine is a severe irritant to skin and eyes and may induce skin sensitisation. Acute exposure to saturated vapour via inhalation was tolerated without impairment but exposure to aerosol may lead to reversible irritations of the mucous membranes in the airways. Studies done on experimental animals showed that it does not cause cancer or foetal developmental defects. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Considered to be a skin sensitiser in the Local Lymph Node Assay (LLNA) conducted according to OECD Test Guideline 429. The substance does not cause effects that meet the criteria for classification for systemic or target organ toxicity after repeated sub-acute exposures. Based on read-across to these findings, Fatty acids, C18-unsatd., dimers, reaction products with polyethylenepolyamines does not meet the criteria for classification for repeated dose toxicity according to Regulation 1272/2008/EC or Directive 67/548/EEC. Genetic toxicity Negative results were obtained in an in vitro study conducted using bacterial cells. Negative results were obtained for the read across substance in vitro studies in C18 FATTY ACID DIMERS/ mammalian cells. Based on these results, the substance is not predicted to have any genotoxic potential. The substance does not meet the **POLYETHYLENEPOLYAMINE** criteria for classification for genetic toxicity according to Regulation No.1272/2008/EC or Directive 67/548/EEC. *REACh Dossier 551imcat **POLYAMIDES** Laboratory testing shows that the fatty acid amide, cocoamide DEA, causes occupational allergic contact dermatitis, and that allergy to this substance is becoming more common. Alkanolamides are manufactured by condensation of diethanolamine and the methyl ester of long chain fatty acids. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition Carboguard 504 Part B & known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main **N-BUTANOL & NAPHTHA** criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent PETROLEUM, LIGHT asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible **AROMATIC SOLVENT &** airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal TRIETHYLENETETRAMINE & lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to C18 FATTY ACID DIMERS/ the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a **POLYETHYLENEPOLYAMINE** result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The **POLYAMIDES** disorder is characterized by difficulty breathing, cough and mucus production. The following information refers to contact allergens as a group and may not be specific to this product. Carboguard 504 Part B & Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact

eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria

distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely

clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the

distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a

TRIETHYLENETETRAMINE &

POLYETHYLENEPOLYAMINE

C18 FATTY ACID DIMERS/

POLYAMIDES

Continued...

Version No: **6.17** Page **12** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B

Print Date: 17/12/2019

Carboguard 504 Part B & C18 FATTY ACID DIMERS/ POLYETHYLENEPOLYAMINE POLYAMIDES

The chemicals in the Fatty Nitrogen Derived (FND) Amides are generally similar in terms of physical and chemical properties, environmental fate and toxicity. Its low acute oral toxicity is well established across all subcategories by the available data and show no apparent organ specific toxicity, mutation, reproductive or developmental defects.

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds are synthetically made surfactants. Studies show that its solubility, toxicity and irritation depend on chain length and bond type while effect on histamine depends on concentration. QACs may cause muscle paralysis with no brain involvement. There is a significant association between the development of asthma symptoms and the use of QACs as disinfectant.

For trimethylbenzenes

Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine.

Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation.

Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness.

Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils.

Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations.

Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity.

N-BUTANOL & TRIETHYLENETETRAMINE

Carboguard 504 Part B &

NAPHTHA PETROLEUM,

LIGHT AROMATIC SOLVENT

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

TRIETHYLENETETRAMINE & C18 FATTY ACID DIMERS/ POLYETHYLENEPOLYAMINE POLYAMIDES

Ethyleneamines are very reactive and can cause chemical burns, skin rashes and asthma-like symptoms. It is readily absorbed through the skin and may cause eye blindness and irreparable damage. As such, they require careful handling. In general, the low-molecular weight polyamines have been positive in the Ames assay (for genetic damage); however, this is probably due to their ability to chelate copper.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	✓

Legend:

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Carboguard 504 Part B	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-376mg/L	2
	EC50	48	Crustacea	1-328mg/L	2
n-butanol	EC50	96	Algae or other aquatic plants	225mg/L	2
	BCF	24	Fish	921mg/L	4
	EC0	48	Crustacea	1-260mg/L	2
	NOEC	504	Crustacea	4.1mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	4.1mg/L	2
naphtha petroleum, light aromatic solvent	EC50	48	Crustacea	3.2mg/L	2
	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	72	Algae or other aquatic plants	=1mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	180mg/L	1
triethylenetetramine	EC50	48	Crustacea	31.1mg/L	1
	EC50	72	Algae or other aquatic plants	2.5mg/L	1
	NOEC	72	Algae or other aquatic plants	<2.5mg/L	1
C18 fatty acid dimers/	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
polyethylenepolyamine	LC50	96	Fish	7.07mg/L	2
polyamides	EC50	48	Crustacea	5.18mg/L	2

Version No: 6.17 Page 13 of 18 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboquard 504 Part B

EC50 72 Algae or other aquatic plants 4.11mg/L 72 NOFC Algae or other aquatic plants 1.25mg/L Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

May cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- rowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- ▶ lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- ▶ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water

Surfactants are in general toxic to aquatic organisms due to their surface-active properties. Historically, synthetic surfactants were often composed of branched alkyl chains resulting in poor biodegradability which led to concerns about their environmental effects. Today however, many of them, for example those used in large amounts, globally, as detergents, are linear and therefore readily biodegradable and considered to be of rather low risk to the environment. A linear structure of the hydrophobic chain facilitates the approach of microorganism while branching, in particular at the terminal position, inhibits biodegradation. Also, the bioaccumulation potential of surfactants is usually low due to the hydrophilic units. Linear surfactants are not always preferred however, as some branching (that ideally does not hinder ready biodegradability) is often preferable from a performance point of view. The reduction in waste water of organic contaminants such as surfactants can either be a consequence of adsorption onto sludge or aerobic biodegradation in the biological step. Similar sorption and degradation processes occur in the environment as a consequence of direct release of surfactants into the environment from product use, or through effluent discharge from sewage treatment plants in surface waters or the application of sewage sludge on land. However, a major part of surfactants in waste water will be efficiently eliminated in the sewage treatment plant. Although toxic to various organisms, surfactants in general only have a limited effect on the bacteria in the biological step. There are occasions however, where adverse effects have been noticed due to e.g. large accidental releases of softeners from laundry companies.

For 1,2,4 - Trimethylbenzene:

Half-life (hr) air: 0.48-16;

Half-life (hr) H2O surface water: 0.24 -672;

Half-life (hr) H2O ground: 336-1344;

Half-life (hr) soil: 168-672;

Henry's Pa m3 /mol: 385 -627;

Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance.

Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days).

Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic

Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks For petroleum distillates:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL . Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

Version No: **6.17** Page **14** of **18** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part B

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For C9 aromatics (typically trimethylbenzene - TMBs)

Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative. Environmental Fate:

In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions.

Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4-trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN 25550-14-5)). These three substances exceed 60%

biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured.

Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high.

Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative.

Ecotoxicity

Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations. The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna

reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value. for Quaternary Ammonium Compounds (QAC's): QAC's are white, crystalline powders. Low molecular weight QACs are very soluble in water, but slightly or not at all soluble in solvents such as ether, petrol and benzene. As the molecular weight and chain lengths increases, the solubility in polar solvents (e.g. water) decreases and the solubility in non-polar solvents increases.

Environmental Fate: A major part of the QACs is discharged into wastewater and removed in the biological processes of sewage treatment, however; the aerobic and anaerobic biodegradability of QACs is not well investigated. Only sparse data are available concerning stability, solubility and biodegradability. In general, it seems that the biodegradability decreases with increasing numbers of alkyl chains. Within each category the biodegradability seems inversely proportional to the alkyl chain length. Heterocyclic QACs are less degradable than the non-cyclic.

Ecotoxicity: Significant bioaccumulation is not expected.

Aquatic Fate: The toxicity of QAC's is known to be greatly reduced in the environment because of preferential binding to dissolved organics in surface water. For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Version No: **6.17** Page **15** of **18** Issue Date: **17/12/2019**Print Date: **17/12/2019**

Carboguard 504 Part B

toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely

Environmental Fate: Naphthalene may be reach surface water and soil through transportation in water or being carried by air. Most airborne naphthalene is in a vapour form and hence deposition is expected to be slow. A minimal amount of naphthalene emitted to the air is transported to other environmental components mostly by dry deposition. Naphthalene in surface water may volatililize into the atmosphere, depending on environmental condiditons. It remains in solution in water, with only small amounts associated with suspended material and benthic sediments. While naphthalene is readily volatilized from aerated soils, it adheres to soils with a high organic content. Adsorption to aquifer material reduces transportation of naphthalene through groundwater, and the presence of nonionic organic compounds such as tetrachloroethene may enhance sorption to materials that contain low carbon content. Bioconcentration of naphthalene is moderate in aquatic organisms. It is readily metabolized by fish, and invertebrates that are placed in pollutant free water rapidly eliminate any traces of the pollutant. While bioaccumulation in the food chain is unlikely, exposure of cows and chickens to naphthalene could lead to naphthalene being present in milk and eggs. While the data on the transport and partitioning of methylnaphthalenes in the environment is limited, the characteristics of these chemicals are similar to naphthalene, so they are expected to behave in a similar manner to naphthalene in the environment, and produce the same effects on aquatic organisms. Biodegradation of naphthalene occurs relatively quickly in aquatic systems. Methylnaphthalenes are biodegraded under aerobic conditions after adaptation. Degradation rates are highest in water constantly polluted with petroleum. Naphthalene biodegradation rates are higher in sediment than in the water column above it. Methylnaphthalenes biodegrades more slowly. Reported half-lives in sediments were 46 weeks for 1-methylnaphthalene and ranged from 14 to 50 weeks for 2-methylnaphthalene. In soils, the potential for biodegradation is an important factor for biological remediation of soil. Studies on biodegradation of PAHs suggest that adsorption to the organic matter significantly reduces the bioavailability for microorganisms, and thus the biodegradability, of PAHs, including naphthalene. Biodegradation is accomplished through the action of aerobic microorganisms and is reduced in anaerobic soil conditions. Naphthalene biodegrades to carbon dioxide in aerobic soils, with salicylate as an intermediate product. Abiotic degradation of naphthalene seldom occurs in soils. As with naphthalene, 1-Methylnaphthalene is easily volatilised from aerated soil, and the biodegradation half-life averages between 1.7 and 2.2 days

Ecotoxicity: Acute toxicity data on naphthalene for several fish species (freshwater and marine), show 96h LC50 values range from 1.8 to 7.8 mg/L. Comparable results were obtained with other vertebrates (amphibians). From chronic toxicity tests, a precise NOEL is not clearly determined. A NOEC of 0.12 mg/L was observed in a 40 days test on juvenile pink salmon, but 50% mortality at 0.11 mg/L was calculated for trout fry exposed during hatching. Several data are also available for invertebrates, showing 48h EC50 values ranging from 2.1 to 24 mg/L. While chronic data on freshwater invertebrates and algae are questionable, a 50% photosynthesis reduction was observed at 2.8 mg/L in 4 hours experiments. QSAR prediction models give results consistent with experimental short-term data on fish daphnia and algae.

DO NOT discharge into sewer or waterways.

Persistence and degradability

For naphthalene:

Ingredient	Persistence: Water/Soil	Persistence: Air
n-butanol	LOW (Half-life = 54 days)	LOW (Half-life = 3.65 days)
triethylenetetramine	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
n-butanol	LOW (BCF = 0.64)
triethylenetetramine	LOW (LogKOW = -2.6464)

Mobility in soil

Ingredient	Mobility
n-butanol	MEDIUM (KOC = 2.443)
triethylenetetramine	LOW (KOC = 309.9)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ► Reuse
- Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Version No: **6.17** Page **16** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B

Print Date: 17/12/2019

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

- (1) a blast overpressure of more than 9 kPa; or
- (2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

HAZCHEM

•3Y

Land transport (UN)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group			
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 163; 223; 367 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)			
	ICAO/IATA Class	3		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	3L		
Packing group	III			
Environmental hazard	Environmentally hazardous			
Special precautions for user	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		366	
	Cargo Only Maximum Qty / Pack		220 L	
	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo Limited Maximum Qty / Pack		10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Packing group	III

Version No: **6.17** Page **17** of **18** Issue Date: **17/12/2019**

Carboguard 504 Part B

Environmental hazard Marine Pollutant

EMS Number F-E, S-E

Special precautions for user

Special provisions 163 223 367 955

Limited Quantities 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002669	Surface Coatings and Colourants (Flammable, Toxic [6.7]) Group Standard 2017

N-BUTANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances

IMO Provisional Categorization of Liquid Substances - List 1: Pure or technically pure products

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

Print Date: 17/12/2019

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures

IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixture containing at least 99% by weight of components already assessed by IMO International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule; Dangerous Goods 2005 - Schedule 2 Dangerous Goods in Limited Quantities and Consumer Commodities

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

TRIETHYLENETETRAMINE IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

C18 FATTY ACID DIMERS/ POLYETHYLENEPOLYAMINE POLYAMIDES IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity beyond which controls apply for closed containers	Quantity beyond which controls apply when use occurring in open containers	
3.1C	500 L in containers greater than 5 L 1500 L in containers up to and including 5 L	250 L 250 L	

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AICS	Yes

Version No: 6.17 Page 18 of 18 Issue Date: 17/12/2019 Print Date: 17/12/2019

Carboguard 504 Part B

Canada - DSL	Yes		
Canada - NDSL	No (n-butanol; naphtha petroleum, light aromatic solvent; C18 fatty acid dimers/ polyethylenepolyamine polyamides; triethylenetetramine)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (C18 fatty acid dimers/ polyethylenepolyamine polyamides)		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - ARIPS	No (C18 fatty acid dimers/ polyethylenepolyamine polyamides)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing/see specific ingredients in brackets).		

SECTION 16 OTHER INFORMATION

Revision Date	17/12/2019
Initial Date	13/10/2017

No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SDS Version Summary

Version	Issue Date	Sections Updated
5.17.1.1.1	17/12/2019	Acute Health (swallowed), Chronic Health, Classification, First Aid (swallowed), Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.