Carboxane 2000 Part A #### **ALTEX COATINGS LTD** Version No: 5.16 Safety Data Sheet according to HSNO Regulations Issue Date: 27/02/2018 Print Date: 27/02/2018 S.GHS.NZL.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carboxane 2000 Part A | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Part A of a two pack isocyanate free coating #### Details of the supplier of the safety data sheet | Registered company name | ALTEX COATINGS LTD | | |-------------------------|---|--| | Address | 91-111 Oropi Road Tauranga Bay of Plenty 3112 New Zealand | | | Telephone | +64 7 5411221 | | | Fax | +64 7 5411310 | | | Website | www.altexcoatings.com | | | Email | neil.debenham@carboline.co.nz | | #### **Emergency telephone number** | Association / Organisation | NZ POISONS (24hr 7 days) | |-----------------------------------|--------------------------| | Emergency telephone numbers | 0800 764766 | | Other emergency telephone numbers | Not Available | # **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | +800 2436 2255 | +800 2436 2255 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Classification ^[1] | Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Reproductive Toxicity Category 1B, Chronic Aquatic Hazard Category 3 | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 6.5B (contact), 9.1C, 8.3A, 6.3A, 3.1C, 6.8A | #### Label elements Hazard pictogram(s) SIGNAL WORD DANGER # Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|------------------------------| | H315 | Causes skin irritation. | Chemwatch: 9-98842 Version No: 5.16 # Page 2 of 14 Carboxane 2000 Part A Issue Date: 27/02/2018 Print Date: 27/02/2018 | H318 | Causes serious eye damage. | |------|--| | H317 | May cause an allergic skin reaction. | | H360 | May damage fertility or the unborn child. | | H412 | Harmful to aquatic life with long lasting effects. | # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|---| | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | P233 | Keep container tightly closed. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P281 | Use personal protective equipment as required. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | | | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | P310 | Immediately call a POISON CENTER or doctor/physician. | | P362 | Take off contaminated clothing and wash before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | # Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|---------------------------------------| | 110-43-0 | 1-10 | amyl methyl ketone | | 77-58-7 | 1-10 | dibutyltin dilaurate | | 2530-83-8 | 10-20 | gamma-glycidoxypropyltrimethoxysilane | | 1330-20-7 | <=1 | <u>xvlene</u> | | Not Available | <=1 | uv additive | # **SECTION 4 FIRST AID MEASURES** NZ Poisons Centre 0800 POISON (0800 764 766) | NZ Emergency Services: 111 #### Description of first aid measures | | If this product comes in contact with the eyes: | |-------------|---| | | Immediately hold eyelids apart and flush the eye continuously with running water. | | Eye Contact | ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. | | | Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. | | | ► Transport to hospital or doctor without delay. | | | Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. Skin Contact ► Flush skin and hair with running water (and soap if available). #### Carboxane 2000 Part A Seek medical attention in event of irritation. For thermal burns: ▶ Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. ▶ Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments: this may cause infection. ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) ▶ Cool the burn by immerse in cold running water for 10-15 minutes Use compresses if running water is not available. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. ▶ Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort) Lay the person flat. ► Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. ► Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: ▶ Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. ► Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. ► To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up. ► Check pulse and breathing to monitor for shock until emergency help arrives. ▶ If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. ▶ If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Ingestion #### Indication of any immediate medical attention and special treatment needed Seek medical advice.Avoid giving milk or oilsAvoid giving alcohol. Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced
mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. For acute and short term repeated exposures to methanol: - ► Toxicity results from accumulation of formaldehyde/formic acid. - Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation. - ▶ Stabilise obtunded patients by giving naloxone, glucose and thiamine. - ▶ Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established. - Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 meq/L). - Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal. - Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8. Phenytoin may be preferable to diazepam for controlling seizure. [Ellenhorn Barceloux: Medical Toxicology] BIOLOGICAL EXPOSURE INDEX - BEI Determinant Index Sampling Time Comment 1. Methanol in urine 15 mg/l End of shift B, NS 2. Formic acid in urine 80 mg/gm creatinine Before the shift at end of workweek B, NS B: Background levels occur in specimens collected from subjects NOT exposed. NS: Non-specific determinant - observed following exposure to other materials. For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. Chemwatch: 9-98842 Page 4 of 14 Issue Date: 27/02/2018 Version No: 5.16 Print Date: 27/02/2018 #### Carboxane 2000 Part A These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift Last 4 hrs of shift 2 mg/min #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - ► Foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit). - ▶ Carbon dioxide. - ▶ Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |----------------------|--| |----------------------|--| Advice for firefighters May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Fire Fighting ▶ Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. ▶ Alert Fire Brigade and tell them location and nature of hazard. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - ▶ Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air - Moderate explosion hazard when exposed to heat or flame. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - ► On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) formaldehyde silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** Fire/Explosion Hazard # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | |--------------|--| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Chemwatch: 9-98842 Page 5 of 14 Version No: 5.16 #### Carboxane 2000 Part A Issue Date: 27/02/2018 Print Date: 27/02/2018 #### **SECTION 7 HANDLING AND STORAGE** Safe handling Other information Suitable container #### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers - ► Electrostatic discharge may be generated during pumping this may result in fire. - ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec). - ▶ Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights or ignition
sources. Avoid generation of static electricity. - DO NOT use plastic buckets - Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ► DO NOT allow clothing wet with material to stay in contact with skin #### Store in original containers in approved flammable liquid storage area. - ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - ► Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas - ► Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ► Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### **Xylenes** - may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - attack some plastics, rubber and coatings - may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. - Contact with water liberates highly flammable gases For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxide: - Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. Continued... # Storage incompatibility #### Carboxane 2000 Part A - ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products. - Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Epoxides: - are highly reactive with acids, bases, and oxidising and reducing agents. - react, possibly violently, with anhydrous metal chlorides, ammonia, amines and group 1 metals. - ▶ may polymerise in the presence of peroxides or heat polymerisation may be violent - ▶ may react, possibly violently, with water in the presence of acids and other catalysts. - X Must not be stored together - May be stored together with specific preventions 0 - May be stored together #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|----------------------|-------------------------------------|--------------------|---------------|---------------|--------------------------| | New Zealand Workplace Exposure
Standards (WES) | amyl methyl ketone | 2-Heptanone (Methyl n-amyl ketone) | 233 mg/m3 / 50 ppm | Not Available | Not Available | Not Available | | New Zealand Workplace Exposure
Standards (WES) | dibutyltin dilaurate | Tin metal: Organic compounds, as Sn | 0.1 mg/m3 | 0.2 mg/m3 | Not Available | (skin) - Skin absorption | | New Zealand Workplace Exposure Standards (WES) | xylene | Dimethylbenzene (see Xylene) | 217 mg/m3 / 50 ppm | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|--|---------------|---------------|---------------| | amyl methyl ketone | Methyl n-amyl ketone | 150 ppm | 670 ppm | 4000 ppm | | dibutyltin dilaurate | Dibutyltin dilaurate; (Dibutylbis(lauroyloxy)stannane) | 1.1 mg/m3 | 8 mg/m3 | 48 mg/m3 | | gamma-
glycidoxypropyltrimethoxysilane | Glycidoxypropyltrimethoxysilane; (3-(2,3-Epoxypropoxy) propyltrimethoxysilane) | 9.3 mg/m3 | 100 mg/m3 | 230 mg/m3 | | xylene | Xylenes | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | amyl methyl ketone | 800 ppm | Not Available | | dibutyltin dilaurate | 25 mg/m3 | Not Available | | gamma-
glycidoxypropyltrimethoxysilane | Not Available | Not Available | | xylene | 900 ppm | Not Available | | uv additive | Not Available | Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | н | | | |---|---|------------------------------------| | | Type of
Contaminant: | Air Speed: | | | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Chemwatch: 9-98842 Page 7 of 14 Issue Date: 27/02/2018 Version No: 5.16 Print Date: 27/02/2018 #### Carboxane 2000 Part A Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: High production, heavy use 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection # Eye and face protection ► Safety glasses with side shields. ► Chemical goggles. 3: Intermittent, low production. 4: Large hood or large air mass in motion Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity #### Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### Body protection Other protection See Other protection below - Overalls. - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - ► Ensure there is ready access to a safety shower. # Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Thermal hazards Not Available Issue Date: 27/02/2018 Version No: 5.16 Print Date: 27/02/2018 #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\ computer$ generated selection: Carboxane 2000 Part A | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation - #### Respiratory protection Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class | - | | | | 1 | | | up to 50 | 1000 | - | A-AUS / Class | | | | | 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | ^{* -} Continuous Flow A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K =
Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | coloured viscous liquid | | | |--|-------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.42 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 7394.37 | | Initial boiling point and boiling range (°C) | 148 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 40 | Taste | Not Available | | Evaporation rate | > 1 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.9 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.9 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | 16.74 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. $^{^{\}star\star}$ - Continuous-flow or positive pressure demand. Chemwatch: 9-98842 Version No: 5.16 # Page 9 of 14 Carboxane 2000 Part A Issue Date: 27/02/2018 Print Date: 27/02/2018 | Conditions to avoid | See section 7 | |----------------------------------|---------------| | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicological effects | | |--------------------------------------|--| |--------------------------------------|--| # Inhaled The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Minor but regular methanol exposures may effect the central nervous system, optic nerves and retinae. Symptoms may be delayed, with headache, fatigue, nausea, blurring of vision and double vision. Continued or severe exposures may cause damage to optic nerves, which may become severe with permanent visual impairment even blindness resulting. WARNING: Methanol is only slowly eliminated from the body and should be regarded as a cumulative poison which cannot be made non-harmful [CCINFO] Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant #### Ingestion Accidental ingestion of the material may be damaging to the health of the individual. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry #### Skin Contact through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### Eye If applied to the eyes, this material causes severe eye damage. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. Chronic Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. #### Carboxane 2000 Part A | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | #### amyl methyl ketone | TOXICITY | IRRITATION | |--|---------------------------------| | Dermal (rabbit) LD50: 12600 mg/kg ^[2] | Skin (rabbit): 14 mg/24h Mild | | Inhalation (rat) LC50: 3995.436 mg/l/4h ^[2] | Skin (rabbit): Primary Irritant | | Oral (rat) LD50: 1670 mg/kg ^[2] | | # dibutyltin dilaurate | TOXICITY | IRRITATION | |---|------------------------------------| | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 100 mg/24h -moderate | | Inhalation (mouse) LC50: 0.075 mg/l/2H ^[2] | Skin (rabbit): 500 mg/24h - mild | | Oral (rat) LD50: >=33<=300 mg/kg ^[1] | | #### gammaglycidoxypropyltrimethoxysilane | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | #### xylene | TOXICITY | IRRITATION | |--|-----------------------------------| | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | Oral (rat) LD50: 4300 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | Skin (rabbit):500 mg/24h moderate | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Chemwatch: 9-98842 Page 10 of 14 Issue Date: 27/02/2018 Version No: 5.16 Print Date: 27/02/2018 #### Carboxane 2000 Part A | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification ✓ – Data available to make classification N - Data Not Available to make classification #### SECTION 12 ECOLOGICAL INFORMATION #### Toxicity | Carboxane 2000 Part A | ENDPOINT | ENDPOINT TEST DURATION (HR) | | SPECIES | VALUE | | SOURCE | | |------------------------------|---------------|----------------------------------|---------|-------------------------|---------------|-----------|---------------|--| | Carboxane 2000 Part A | Not Available | ole Not Available | | Not Available | Not Available | | Not Available | | | | ENDPOINT | TEST DURATION (HR) | SPEC | ES | | VALUE | SOURCE | | | | LC50 | 96 | Fish | | | 131mg/L | 4 | | | amyl methyl ketone | EC50 | 48 | Crusta | icea | | >90.1mg/L | 2 | | | | EC50 | 72 | Algae | or other aquatic plants | | 75.5mg/L | 2 | | | | NOEC | 72 | Algae | or other aquatic plants | | 42.68mg/L | 2 | | | | | | | | | | | | | | ENDPOINT | TEST DURATION (HR) | SPECIES | | | VALUE | SOURCE | | | dibutyltin dilaurate | EC50 | 72 Algae or other aquatic plants | | S | >1mg/L | 2 | | | | | | <u>'</u> | | | | | | | | gamma- | ENDPOINT | TEST DURATION (HR) | | SPECIES | VALUE | | SOURCE | | | cidoxypropyltrimethoxysilane | Not Available | Not Available | | Not Available | Not Available | | Not Available | | | | - | <u>'</u> | | <u> </u> | | | | | | | ENDPOINT | TEST DURATION (HR) | SPEC | CIES | | VALUE | SOURCE | | | | LC50 |
96 | Fish | | | 2.6mg/L | 2 | | | xylene | EC50 | 48 | Crust | acea | | >3.4mg/L | 2 | | | | EC50 | 72 | Algae | or other aquatic plants | | 4.6mg/L | 2 | | | | NOEC | 73 | Algae | or other aquatic plants | | 0.44mg/L | 2 | | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Alkoxysilanes are highly toxic to algae and moderately toxic to aquatic invertebrates. e.g. the daphnid 48 hour LC50 for dimethyldiethoxysilane is 1.25 mg/l, and the 15-day algal EC50 for a number of alkoxysilanes is approximately 10 mg/l. Alkoxysilanes are used as coupling agents and are designed to hydrolyse in water. Hydrolysis generally produces biodegradable alcohols. Studies indicate that the rates of hydrolysis of alkoxysilanes are related to their steric bulk, but these effects become less important after hydrolysis of the first alkoxy group. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. for gamma-glycidopropyltrimethoxysilane (GPTMS) Environmental Fate: The melting point of GPTMS is < -70C, the boiling point is 290C at 1013 hPa, and the vapor pressure is 0.003 hPa at 20 C. Because GPTMS is hydrolytically unstable, the water solubility was not measured. From photodegradation modeling, the half-life in the atmosphere due to reaction with photochemically-induced OH radicals is estimated to be 5.8 hours. However, the overall half-life may be even shorter, as concurrent hydrolysis will also occur. The measured hydrolysis half-life for GPTMS at 25C ranges from 3 minutes to 6.5 hours over the pH range of 5 to 9. At pH 7 and 25C, the half-life of the parent compound is 6.5 hours and the conversion of GPTMS to methanol and 3-glycidoxypropylsilanetriol is expected to reach 99.9% in <2.8 days. The epoxy group slowly reacts (over a period of months) to form diols in water. The Si-C bond will not undergo hydrolysis. The transient silanol groups will condense with other silanols to yield an epoxy-functional silicone resin (oligomer resin). The measured (and calculated) hydrolysis half-lives demonstrate that GPTMS is hydrolytically unstable over a range of environmentally relevant pH and temperature conditions. Fish LC50 (96 h):juvenile rainbow trout (Oncorhynchus mykiss) 237 mg/l (semi-static); carp (Cyprinus carpio) 55 mg/l Daphnia magna EC50 (48 h): 473-710 mg/l Algae EbC50 (72 h): Selenastrum capricornutum 250 mg/l; ErC50 350 mg/l Since GPTMS is subject to hydrolysis, which may occur during preparation of the dosing solutions and/or during testing, the observed toxicity is likely due to the hydrolysis products methanol and silenotricity. # Page **11** of **14** Carboxane 2000 Part A Print Date: 27/02/2018 Issue Date: 27/02/2018 Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative. For 1,2-Butylene oxide (Ethyloxirane): log Kow values of 0.68 and 0.86. BAF and BCF: 1 to 17 L./kg. Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days. Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil. Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days). Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L. #### For Xylenes log Koc: 2.05-3.08; Koc: 25.4-204; Half-life (hr) air: 0.24-42; Half-life (hr) H2O surface water: 24-672; Half-life (hr) H2O ground: 336-8640; Half-life (hr) soil: 52-672; Henry's Pa m3 /mol: 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125: BCF: 23; log BCF: 1.17-2.41. Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghexylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2.4-dimethylphenol. 2.6-dimethylphenol. and 4-nitro-2.6-dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-----------------------------|-----------------------------| | amyl methyl ketone | LOW | LOW | | dibutyltin dilaurate | HIGH | HIGH | | gamma-
glycidoxypropyltrimethoxysilane | HIGH | HIGH | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|------------------------| | amyl methyl ketone | LOW (LogKOW = 1.98) | | dibutyltin dilaurate | LOW (BCF = 110) | | gamma-
glycidoxypropyltrimethoxysilane | LOW (LogKOW = -0.9152) | | xylene | MEDIUM (BCF = 740) | #### Mobility in soil |
Ingredient | Mobility | |---|----------------------| | amyl methyl ketone | LOW (KOC = 24.01) | | dibutyltin dilaurate | LOW (KOC = 64610000) | | gamma-
glycidoxypropyltrimethoxysilane | LOW (KOC = 90.22) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - ► Recycling - ▶ Disposal (if all else fails) Carboxane 2000 Part A Issue Date: 27/02/2018 Print Date: 27/02/2018 This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required **Marine Pollutant** HAZCHEM NO •3Y #### Land transport (UN) | UN number | 1263 | |----------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | Packing group **Environmental hazard** Not Applicable Special precautions for user Special provisions 163; 223; 367 5 L Limited quantity # Air transport (ICAO-IATA / DGR) | UN number | 1263 | |-------------------------|---| | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | ICAO/IATA Class 3 | # Transport hazard class(es) | ICAO/IATA Class | 3 | |---------------------|----------------| | ICAO / IATA Subrisk | Not Applicable | | ERG Code | 3L | # Packing group #### Environmental hazard Not Applicable #### Special precautions for user | Special provisions | A3 A72 A192 | |---|-------------| | Cargo Only Packing Instructions | 366 | | Cargo Only Maximum Qty / Pack | 220 L | | Passenger and Cargo Packing Instructions | 355 | | Passenger and Cargo Maximum Qty / Pack | 60 L | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | # Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | |-------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | #### Carboxane 2000 Part A | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | |------------------------------|--| | Packing group | | | Environmental hazard | Not Applicable | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002662 | Surface Coatings and Colourants (Flammable) Group Standard 2006 | #### AMYL METHYL KETONE(110-43-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Workplace Exposure Standards (WES) New Zealand Inventory of Chemicals (NZIoC) #### DIBUTYLTIN DILAURATE(77-58-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Workplace Exposure Standards (WES) New Zealand Inventory of Chemicals (NZIoC) #### GAMMA-GLYCIDOXYPROPYLTRIMETHOXYSILANE(2530-83-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of New Zealand Inventory of Chemicals (NZIoC) Chemicals # XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Workplace Exposure Standards (WES) # **Location Test Certificate** Subject to Regulation 55 of the Hazardous Substances (Classes 1 to 5 Controls) Regulations, a location test certificate is required when quantity greater than or equal to those indicated below are present. | Hazard Class | Quantity beyond which controls apply for closed containers | Quantity beyond which controls apply when use occurring in open containers | |--------------|---|--| | 3.1C | 500 L in containers greater than 5 L 1500 L in containers up to and including 5 L | 250 L
250 L | ### **Approved Handler** Subject to Regulation 56 of the Hazardous Substances (Classes 1 to 5 Controls) Regulations and Regulation 9 of the Hazardous Substances (Classes 6, 8, and 9 Controls) Regulations, the substance must be under the personal control of an Approved Handler when present in a quantity greater than or equal to those indicated below. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information # **Tracking Requirements** Not Applicable | National Inventory | Status | |-------------------------------|---| | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (gamma-glycidoxypropyltrimethoxysilane; xylene; dibutyltin dilaurate; amyl methyl ketone) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | Υ | | Japan - ENCS | Υ | | Korea - KECI | Υ | Chemwatch: 9-98842 Page 14 of 14 Issue Date: 27/02/2018 Version No: 5.16 Print Date: 27/02/2018 #### Carboxane 2000 Part A | New Zealand - NZIoC | Y | |---------------------|---| | Philippines - PICCS | Y | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations**
PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch. # Carboxane 2000 Part B #### **ALTEX COATINGS LTD** Version No: 5.12 Safety Data Sheet according to HSNO Regulations Issue Date: 27/02/2018 Print Date: 27/02/2018 S.GHS.NZL.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carboxane 2000 Part B | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Part B of a two pack isocyanate free coating #### Details of the supplier of the safety data sheet | Registered company name | ALTEX COATINGS LTD | |-------------------------|---| | Address | 91-111 Oropi Road Tauranga Bay of Plenty 3112 New Zealand | | Telephone | +64 7 5411221 | | Fax | +64 7 5411310 | | Website | www.altexcoatings.com | | Email | neil.debenham@carboline.co.nz | #### **Emergency telephone number** | Association / Organisation | NZ POISONS (24hr 7 days) | |-----------------------------------|--------------------------| | Emergency telephone numbers | 0800 764766 | | Other emergency telephone numbers | Not Available | # **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | | |----------------|----------------------|----------------------|--| | +800 2436 2255 | +800 2436 2255 | +612 9186 1132 | | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. | Flammable Liquid Category 3, Metal Corrosion Category 1, Acute Toxicity (Oral) Category 5, Acute Toxicity (Dermal) Category 5, Acute Toxic (Inhalation) Category 4, Skin Corrosion/Irritation Category 1C, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Chronic Aquatic Category 4 | | | |--|--|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | | Determined by Chemwatch using GHS/HSNO criteria | 6.5B (contact), 8.2C, 6.1E (dermal), 6.1E (oral), 8.3A, 9.1D, 6.1D (inhalation), 3.1C, 8.1A | | #### Label elements Hazard pictogram(s) SIGNAL WORD DANGER #### Hazard statement(s) H226 Flammable liquid and vapour. Chemwatch: 9-98843 Version No: 5.12 # Page 2 of 13 Carboxane 2000 Part B Issue Date: 27/02/2018 Print Date: 27/02/2018 | H290 | May be corrosive to metals. | |------|---| | H303 | May be harmful if swallowed. | | H313 | May be harmful in contact with skin. | | H332 | Harmful if inhaled. | | H314 | Causes severe skin burns and eye damage. | | H317 | May cause an allergic skin reaction. | | H413 | May cause long lasting harmful effects to aquatic life. | #### Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | | |------|---|--|--| | P233 | Keep container tightly closed. | | | | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | | | P271 | Use in a well-ventilated area. | | | | P280 | Vear protective gloves/protective clothing/eye protection/face protection. | | | | P234 | Keep only in original container. | | | | P240 | Ground/bond container and receiving equipment. | | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | P242 | Use only non-sparking tools. | | | | P243 | Take precautionary measures against static discharge. | | | | P273 | Avoid release to the environment. | | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | | #### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | |----------------|--| | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P310 | Immediately call a POISON CENTER or doctor/physician. | | P363 | Wash contaminated clothing before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P390 | Absorb spillage to prevent material damage. | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. ### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### **Substances** See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|----------| | 1330-20-7 | 20-30 | xylene | | Not Available | 10-20 | Reactant | # **SECTION 4 FIRST AID MEASURES** NZ Poisons Centre 0800 POISON (0800 764 766) | NZ Emergency Services: 111 #### Description of first aid measures Eye Contact If this product comes in contact with the eyes: • Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - ► Transport to hospital or doctor without delay. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 9-98843 Page 3 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | |--------------|---| | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve
mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, furnes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) | | Ingestion | Avoid giving milk or oils. Avoid giving alcohol. For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For 3-aminopropyltriethoxysilane (APTES) NOTES: - ► Causes chemical burns to skin and eye. Moderately toxic by swallowing. - May cause acute kidney injury (renal cortical tubular necrosis) by massive peroral overdose or sustained skin contact. - Due to the severely irritating or corrosive nature of the material, swallowing may lead to ulceration and inflammation of the upper alimentary tract with haemorrhage and fluid loss. Also, perforation of the oesophagus or stomach may occur, leading to mediastinitis or peritonitis and the resultant complications. The stomach should be evacuated carefully in case of ingestion. - The material reacts immediately with water in the acid contents of the stomach to produce ethanol. Although ethanol production may occur, and there is a potential a potential for nephrotoxicity, because of its intensely irritating effects, it is unlikely that large volumes of this material will be acutely ingested. Therefore, the irritant and aspiration hazards from regurgitation are more serious causes for concern. In view of this, it is recommended that emesis should not be induced in the conscious patient, neither mechanically nor pharmacologically. - If it is considered necessary to evacuate the stomach contents, this should be undertaken with caution in order to avoid perforation of inflamed or ulcerated areas of the upper alimentary tract, or to avoid aspiration (eg. gastric lavage in the presence of endotracheal intubation). For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered. (ICSC24419/24421 # **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media - ▶ Foam. - ▶ Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Chemwatch: 9-98843 Page 4 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | |-----------------------|---| | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) carbon monoxide (CO) nitrogen oxides (NOx) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. | #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. | |--------------
--| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse vapour. Contain or absorb spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. $\qquad \qquad \textbf{Electrostatic discharge may be generated during pumping - this may result in fire. } \\$ Ensure electrical continuity by bonding and grounding (earthing) all equipment. Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec). Avoid splash filling. $\,\blacktriangleright\,$ Do NOT use compressed air for filling discharging or handling operations. Safe handling ▶ Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. $\,\blacktriangleright\,$ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Avoid smoking, naked lights or ignition sources. - ► Avoid generation of static electricity. - ► DO NOT use plastic buckets. Chemwatch: 9-98843 Page 5 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B Earth all lines and equipment. Use spark-free tools when handling. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use. Avoid physical damage to containers Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ▶ DO NOT allow clothing wet with material to stay in contact with skin ▶ Store in original containers in approved flammable liquid storage area. ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. ▶ No smoking, naked lights, heat or ignition sources. ► Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate #### Other information - and minimum storage distances. Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas For Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities - Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. security must be provided so that unauthorised personnel do not have access ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - Suitable container - For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - ▶ attack some plastics, rubber and coatings - ▶ may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. #### For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - ► Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides - Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products. - ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 - ► Contact with water liberates highly flammable gases - ► Contact with water can cause heating and decomposition Propylene glycol monomethyl ether (PGME): - · reacts violently with strong oxidisers, alkalis - is incompatible with aliphatic amines, boranes, sulfuric acid, nitric acid, perchloric acid, caustics, isocyanates X — Must not be stored together Storage incompatibility - May be stored together with specific preventions - May be stored together Chemwatch: 9-98843 Version No: 5.12 # Page 6 of 13 Carboxane 2000 Part B Issue Date: **27/02/2018**Print Date: **27/02/2018** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes |
---|------------|------------------------------|--------------------|---------------|---------------|---------------| | New Zealand Workplace Exposure
Standards (WES) | xylene | Dimethylbenzene (see Xylene) | 217 mg/m3 / 50 ppm | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------|-----------------------|--------|-----------------------------|--------| | xylene | Xylenes Not Available | | Not Available Not Available | | | Ingredient | Original IDLH | | Revised IDLH | | | xylene | 900 ppm | | Not Available | | | Reactant | Not Available | | Not Available | | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | # Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 t/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection - Chemical goggles - Full face shield may be required for supplementary but never for primary protection of eyes. #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below # ► Wear chemical protective gloves, e.g. PVC. ► Wear safety footwear or safety gumboots, e.g. Rubber #### Hands/feet protection ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. #### Carboxane 2000 Part B #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **Body protection** #### See Other protection below #### Overalls. - ▶ PVC Apron - ▶ PVC protective suit may be required if exposure severe - Eyewash unit. - ► Ensure there is ready access to a safety shower. # Other protection - · Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who
have been issued conductive footwear should not wear them from their place of work to their homes and return. # Thermal hazards Not Available #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Carboxane 2000 Part B | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | #### Respiratory protection Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class
1 | - | | up to 50 | 1000 | - | A-AUS / Class
1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | - * Continuous Flow - ** Continuous-flow or positive pressure demand. A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) Chemwatch: 9-98843 Page 8 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 Carboxane 2000 Part B VITON * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Clear viscous liquid | | | |--|---|---|---------------| | Physical state | Liquid | 1.00 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | | | 2500 | | Initial boiling point and boiling range (°C) | 78 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 24 | Taste | Not Available | | Evaporation rate | > 1 BuAC = 1 | Explosive properties | Not Available | | Flammability | losive Limit (%) 19 Surface Tension (dyn/cm or mN/m) Not Availa losive Limit (%) 1 Volatile Component (%vol) Not Availa r pressure (kPa) Not Available Gas group Not Availa | | Not Available | | Upper Explosive Limit (%) | | | Not Available | | Lower Explosive Limit (%) | | | Not Available | | Vapour pressure (kPa) | | | Not Available | | Solubility in water (g/L) | | | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | 450.21 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity See section 7 | | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects Inhalation hazard is increased at higher temperatures. Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema. PGME has an offensive odour, and may cause drowsiness and unconsciousness if higher concentrations are inhaled, and severe reactions involving the eyes, nose and throat. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene Inhaled overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant > The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Accidental ingestion of the material may be damaging to the health of the individual. Ingestion Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the oesophagus and stomach may experience burning pain; vomiting and diarrhoea may follow. Chemwatch: 9-98843 Page 9 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B The material can produce chemical burns following direct contact with the skin. Harmful amounts of PGME may be absorbed through the skin following extensive prolonged contact; this may result in drowsiness, unconsciousness and depression. Toxic effects may result from skin absorption **Skin Contact** Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Eve The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Comeal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. When taken repeatedly, PGME may cause damage to liver and kidney, drowsiness and even unconsciousness and death. There is no evidence of damage to the sex organs. However, it has led to multiple pregnancies in rats and rabbits, but sperm destruction in dogs. Animal testing also shows high doses can Chronic delay bone development. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an
assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Prolonged exposure to ethanol may cause damage to the liver and cause scarring. It may also worsen damage caused by other agents. TOXICITY IRRITATION Carboxane 2000 Part B Not Available Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: >1700 mg/kg $^{[2]}$ Eye (human): 200 ppm irritant Inhalation (rat) LC50: 4994.295 mg/l/4h^[2] Eye (rabbit): 5 mg/24h SEVERE xylene Oral (rat) LD50: 4300 mg/kg^[2] Eye (rabbit): 87 mg mild Skin (rabbit):500 mg/24h moderate 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified Leaend: data extracted from RTECS - Register of Toxic Effect of chemical Substances Acute Toxicity Carcinogenicity 0 Skin Irritation/Corrosion Reproductivity 0 Serious Eve Damage/Irritation STOT - Single Exposure Respiratory or Skin J 0 STOT - Repeated Exposure sensitisation Legend: Aspiration Hazard ★ - Data available but does not fill the criteria for classification → Data available to make classification 0 Data Not Available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** Mutagenicity 0 # Toxicity | | ENDPOINT | TEST DURATION (HR) | | SPECIES | VALUE | | SOURCE | |-----------------------|---------------|-----------------------|-------------------------------|-------------------------------|-------|---------------|--------| | Carboxane 2000 Part B | Not Available | Not Available | e Not Available Not Available | |) | Not Available | | | | ENDPOINT | TEST DUDATION (UD) | SPEC | NEC | | VALUE | SOURCE | | | LC50 | TEST DURATION (HR) 96 | Fish | JIE5 | | 2.6mg/L | 2 | | xylene | EC50 | 48 | Crusta | acea | | >3.4mg/L | 2 | | | EC50 | 72 | Algae | Algae or other aquatic plants | | 4.6mg/L | 2 | | | NOEC | 73 | Algae | or other aquatic plants | | 0.44mg/L | 2 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data May cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Chemwatch: 9-98843 Page 10 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble. Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are "readily biodegradable" under aerobic conditions. In soil, biodegradation is rapid for PM and PMA. Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. Alkoxysilanes are highly toxic to algae and moderately toxic to aquatic invertebrates. e.g. the daphnid 48 hour LC50 for dimethyldiethoxysilane is 1.25 mg/l, and the 15-day algal EC50 for a number of alkoxysilanes is approximately 10 mg/l. Alkoxysilanes are used as coupling agents and are designed to hydrolyse in water. Hydrolysis generally produces biodegradable alcohols. Studies indicate that the rates of hydrolysis of alkoxysilanes are related to their steric bulk, but these effects become less important after hydrolysis of the first alkoxy group. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes naphtha log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41. Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2.4-dimethylphenol, 2.6-dimethylphenol, and 4-nitro-2,6-dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. For 3-aminopropyltriethoxsilane (APTES): Environmental Fate: Photodegradation modeling indicates the halflife in the atmosphere due to the reaction with photochemically induced OH radicals to be approximately 2.4 hours. However, photodegradation as a mode of removal is unlikely and not expected to be a significant degradation process because APTES is unstable in water (t1/2 < 1 hour) over a range of environmentally relevant pH and temperature conditions, with the exception of pH 7 at 10 or 24.7 C. At pH 7, the half-life is 56 or 8.4 hours, for 10 or 24.7 C, respectively. Rapid hydrolysis of this material produces ethanol and trisilanols. The Si-C bond will not further hydrolyze as it is hydrolytically stable and the aminopropyl group will not be cleaved. Only the ethoxy groups will be hydrolysed. The transient silanol groups will condense with other silanols. As a result, aminopropyl-functional resins are generated. APTES is not readily biodegradable. The observed biodegradation is of the hydrolysis products (ethanol and trisilanols). Bioaccumulation is not anticipated since this material is hydrolytically unstable. In spill conditions, the concentration of the parent silane is very high. The silanols concentration could also be high; however, the silanol rapidly self-condenses to form water insoluble, resinous oligomers and polymers. The molecular weight of the resulting oligomers and polymers is predicted to be over 1000, with anecdotal evidence suggesting the molecular weight of the polymers resulting from spills is 5000-10000. As the parent silane and the resulting
silanol are diluted, it is predicted that the polymers resulting from condensation will be of lower molecular weight. At sufficiently low silanol concentrations, low molecular weight oligomers are favored. It is calculated that at 1000 ppm of a related trialkoxysilane, the equilibrium concentration will be 86% silanol monomer and 14% silanol dimer. At still lower concentrations, the silanol will exist as the uncondensed monomer. These polymers will not be bioavailable. However, such materials are likely to cause toxicity in aquatic species due to physical effects of smothering. Ecotoxicity: Fish LC50 (96 h): Brachydanio rerio => 934 mg/l Daphnia magna EC50 (48 h): 331 mg/l Green algae EbC10 (72 h): Scenedesmus subspicatus 38 mg/l (growth rate); ErC10 321 mg/l (suppression of cell growth) Since APTES is sensitive to hydrolysis, which may occur during preparation of the dosing solutions and/or during the testing, the observed toxicity is likely due to the hydrolysis products ethanol and trisilanols. # **DO NOT** discharge into sewer or waterways ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-----------------------------|-----------------------------| | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | Reactant | HIGH | HIGH | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|--------------------| | xylene | MEDIUM (BCF = 740) | | Reactant | LOW (BCF = 5.4) | #### Mobility in soil | Ingredient | Mobility | |------------|-------------------| | Reactant | LOW (KOC = 12150) | # **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Version No: 5.12 Carboxane 2000 Part B Page 11 of 13 Issue Date: 27/02/2018 Print Date: 27/02/2018 ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - ▶ Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ► Treat and neutralise at an approved treatment plant. - ► Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required NΩ •3W Marine Pollutant **HAZCHEM** ### Land transport (UN) | UN number | 3469 | | | | |---|--|--|--|--| | UN proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | | | | Transport hazard class(es) Class 3 Subrisk 8 | | | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions 163; 223; 367 Limited quantity 5 L | | | | #### Air transport (ICAO-IATA / DGR) | r transport (IOAO IAIA / DOI | • | | | | |------------------------------|--|------------------------|------------------|--| | UN number | 3469 | | | | | UN proper shipping name | Paint, flammable, corrosive (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material, flammable, corrosive (including paint thinning or reducing compound) | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk | 3 8 | | | | | ERG Code | 3C | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | | Special provisions Cargo Only Packing | Instructions | A3 A72 A192 A803 | | | Special precautions for user | Cargo Only Maximum Qty / Pack | | 60 L | | | | Passenger and Carg | o Packing Instructions | 354 | | | | Passenger and Cargo | Maximum Qtv / Pack | 5L | | Chemwatch: 9-98843 Page 12 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 #### Carboxane 2000 Part B | Passenger and Cargo Limited Quantity Packing Instructions | Y342 | |---|------| | Passenger and Cargo Limited Maximum Qty / Pack | 1 L | | | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3469 | | |------------------------------|--|--| | UN proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | | Transport hazard class(es) | IMDG Class 3
IMDG Subrisk 8 | | | Packing group | | | | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number F-E , S-C Special provisions 163 223 367 Limited Quantities 5 L | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | | | | |---|--|--|--|--| | HSR002663 | Surface Coatings and Colourants (Flammable, Corrosive) Group Standard 2006 | | | | | XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS | | | | | | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | | New Zealand Inventory of Chemicals (NZIoC) | | | | | | New Zealand Workplace Exposure Standards (WES) | | | New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Workplace Exposure Standards (WES) #### **Location Test Certificate** Subject to Regulation 55 of the Hazardous Substances (Classes 1 to 5 Controls) Regulations, a location test certificate is required when quantity greater than or equal to those indicated below are present. | Hazard Class | Quantity beyond which controls apply for closed containers | Quantity beyond which controls apply when use occurring in open containers | |--------------|---|--| | 3.1C | 500 L in containers greater than 5 L 1500 L in containers up to and including 5 L | 250 L
250 L | ## **Approved Handler** Subject to Regulation 56 of the Hazardous Substances (Classes 1 to 5 Controls) Regulations and Regulation 9 of the Hazardous Substances (Classes 6, 8, and 9 Controls) Regulations, the substance must be under the personal control of an Approved Handler when present in a quantity greater than or equal to those indicated below. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### **Tracking Requirements** Not Applicable | National Inventory | Status | |-------------------------------|------------| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (xylene) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | Υ | | Japan - ENCS | Υ | | Korea - KECI | Y | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | Chemwatch: 9-98843 Page
13 of 13 Issue Date: 27/02/2018 Version No: 5.12 Print Date: 27/02/2018 Carboxane 2000 Part B Y = All ingredients are on the inventory Legend: N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.